scholarly journals Grafting Interiority: Generative Methodologies Between the Natural and the Synthetic

Interiority ◽  
2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Rana Abudayyeh

Design is approaching a crucial period where the exchange between interior and exterior systems needs to be rethought and addressed from the standpoint of resilience and innovative environmental responses. The era of the detached interior bubble that is climate controlled and therein severed from natural systems is no longer justified or feasible. Interior spaces must respond to environmental conditions and proactively engage natural systems. The paper examines grafting methodology as an interior spatial formula that aims to generate complex sectional strategies for new programmatic typologies. It showcases work from a third-year interior architecture studio where students utilised natural landscapes as the premise to develop generative computational models that informed their design interventions.While placing interior interventions between natural and synthetic processes, interior grafts outline a design tactic that challenges the disjunction between internal settings and external parameters. The potential to draw relevance from external parameters and integrate the derivative systems into the interior volume carries many implications for interior architecture and urban dynamics. This approach demarks a radical repositioning of the interior volume as a continuation of the exterior scape, proliferating a fluid and active interiority.

Author(s):  
Karen J. Esler ◽  
Anna L. Jacobsen ◽  
R. Brandon Pratt

Extensive habitat loss and habitat conversion has occurred across all mediterranean-type climate (MTC) regions, driven by increasing human populations who have converted large tracts of land to production, transport, and residential use (land-use, land-cover change) while simultaneously introducing novel forms of disturbance to natural landscapes. Remaining habitat, often fragmented and in isolated or remote (mountainous) areas, is threatened and degraded by altered fire regimes, introduction of invasive species, nutrient enrichment, and climate change. The types and impacts of these threats vary across MTC regions, but overall these drivers of change show little signs of abatement and many have the potential to interact with MTC region natural systems in complex ways.


2014 ◽  
Vol 16 (9) ◽  
pp. 2127-2136 ◽  
Author(s):  
Yuanzhi Tang ◽  
Samuel M. Webb ◽  
Emily R. Estes ◽  
Colleen M. Hansel

Manganese (Mn) oxides, which are generally considered biogenic in origin within natural systems, are the only oxidants of Cr(iii) under typical environmental conditions.


2020 ◽  
Author(s):  
Kiva L. Oken ◽  
André E Punt ◽  
Daniel S. Holland

Natural resources often exhibit large interannual fluctuations in productivity driven by shifting environmental conditions, and this translates to high variability in the revenue resource users can earn. However, users can dampen this variability by harvesting a portfolio of resources. In the context of fisheries, this means targeting multiple populations, though the ability to actually build diverse fishing portfolios is often constrained by the costs and availability of fishing permits. These constraints are generally intended to prevent overcapitalization of the fleet and ensure populations are fished sustainably. As linked human-natural systems, both ecological and fishing dynamics influence the specific advantages and disadvantages of increasing the diversity of fishing portfolios. Specifically, a portfolio of synchronous populations with similar responses to environmental drivers should reduce revenue variability less than a portfolio of asynchronous populations with opposite responses. We built a bioeconomic model characterized by the Dungeness crab (Metacarcinus magister), Chinook salmon (Oncorhynchus tshawytscha), and groundfish fisheries in the California Current, and used it to explore the influence of population synchrony and permit access on revenue patterns. As expected, synchronous populations reduced revenue variability less than asynchronous populations, but only for portfolios including crab and salmon. Synchrony with longer-lived groundfish populations was not important because environmentally-driven changes in groundfish early life survival were mediated by growth and natural mortality over the full population age structure, and overall biomass was relatively stable across years. Thus, building a portfolio of diverse life histories can buffer against the impacts of extremely poor environmental conditions over short time scales, though not for long-term declines. Increasing access to all permits generally led to increased revenue stability and decreased inequality of the fleet, but also resulted in less revenue earned by an individual from a given portfolio because more vessels shared the available biomass. This means managers are faced with a tradeoff between the average revenue individuals earn and the risk those individuals accept. These results illustrate the importance of considering connections between social and ecological dynamics when evaluating management options that constrain or facilitate fishers’ ability to diversify their fishing.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 706
Author(s):  
Ron Cook ◽  
Josselin Lupette ◽  
Christoph Benning

Plants are nonmotile life forms that are constantly exposed to changing environmental conditions during the course of their life cycle. Fluctuations in environmental conditions can be drastic during both day–night and seasonal cycles, as well as in the long term as the climate changes. Plants are naturally adapted to face these environmental challenges, and it has become increasingly apparent that membranes and their lipid composition are an important component of this adaptive response. Plants can remodel their membranes to change the abundance of different lipid classes, and they can release fatty acids that give rise to signaling compounds in response to environmental cues. Chloroplasts harbor the photosynthetic apparatus of plants embedded into one of the most extensive membrane systems found in nature. In part one of this review, we focus on changes in chloroplast membrane lipid class composition in response to environmental changes, and in part two, we will detail chloroplast lipid-derived signals.


2014 ◽  
Vol 59 (3) ◽  
Author(s):  
Thamy Ribeiro ◽  
Maria Lizama ◽  
Ricardo Takemoto

AbstractThe aim of the present study was to detect the alterations of Pseudoplatystoma corruscans parasite infracommunity structure, after the construction of the Porto Primavera dam on the high Paraná River floodplain. The execution of this research was based on 119 host specimens collected between March 2011 and September 2012, and the results were compared to studies performed on periods before the reservoir’s construction, when 110 fishes were collected between March 1992 and February 1993. Five parasite species still remain on the environment, despite the environmental modifications: Choanoscolex abscissus, Spasskyelina spinulifera, Nomimoscolex pertierrae, Harriscolex kaparari and Contracaecum sp 2. The Berger-Parker dominance index, calculated to the parasite fauna of 1992, did not show the dominance of any species, while, on the present days, this same index accused the dominance of Nomimoscolex pertierrae (49%) and Choanoscolex abscissus (50%). The present study reports the disappearance of Megathylacus travassosi, Contracaecum sp. 1, Contracaecum sp. 3, Procamallanus (Spirocamallanus) sp. and Cucullanus pseudoplatystomae, suggesting the possibility of a local extinction or a host switch of these species. It has also been registered an Acanthocephala specimen, a genus not observed on this host yet. The results here presented show that the antropic influences on natural systems alter the environmental conditions, what is reflected on the richness and diversity parasite levels.


2021 ◽  
Author(s):  
Sankalpa Venkatraghavan ◽  
Sathvik Anantakrishnan ◽  
Karthik Raman

AbstractMicrobial consortia exhibit spatial patterning in several environments. However, the study of such patterning is limited by the inherent complexity of natural systems. An attractive alternative to study such systems involves the use of model synthetic microbial communities, which are convenient frameworks that allow the reuse of circuit components by eliminating cross-talk through compartmentalization of modules in genetic circuits. Computational models facilitate the understanding of how spatial organization can be harnessed as a tunable parameter in 2D cultures. We propose a Quorum Sensing-Mediated Model to engineer communication between strains in a consortium. This is implemented using a cellular automaton. We further analyze the properties of this model and compare them with those of the traditionally used Metabolite Mediated Model. Our studies indicate that modulating the rate of secretion of quorum sensing molecules is the most effective means of regulating community behavior. The models and codes are available from https://github.com/RamanLab/picCASO.


Author(s):  
Zhumakhan Suleimenovich MUSTAFAYEV ◽  
Jozef MOSIEJ ◽  
Lya Tobazhanovna KOZYKEEVA ◽  
Kurmanbek ZHANYMKHAN

Development of the national economy in the Karatal basin river is characterized by the progressive involvement and development of the resource potential of natural landscapes, the current rate of utilization of which greatly enhances the anthropogenic impact on the natural environment. A significant impact on the formation of the ecological environment of natural landscapes is provided by the rural and water sectors, as well as by industrial facilities related to processing and mining. At the same time, on the one hand the economic activity of the man in the catchment areas of the river basin gives a certain positive effect, and on the other hand, it is accompanied by an unavoidable set of negative ecological consequences that complicate ecological situations in various ranks of natural systems. Such negative natural and man-caused process in human activity occurs as a result of inadequate knowledge of the regularities of interaction between natural and anthropogenic factors, about the processes developing in the natural environment in complex watershed management, which is one of the obstacles on the way to the creation of ecologically sustainable cost-effective water catchment systems. Scientific interest to the assessment of the ecological state of the catchments of rivers and the problem of their complex development have been appeared relatively recently which is explained by the increase in modern conditions of anthropogenic load on the catchment areas, the need to assess the impact of such pressures on the ecological stability of catchments and the emergence of the problem of ensuring the sustainable function of catchments. The catena concept was developed to analyze the regular variability of soil on the slope. The example of this approach consists first in a structural component, the recurring pattern of certain soils in a landscape transects in which every chain element has its place in the chain, a soil has it in a landscape areal. The object of the research is the catchment basin of the Karatal river with a length of 390 km, an area of 19.1 thousand km², which is formed by the merger of three rivers called Tekeliaryk, Chadzha and Kora, sources which are at an altitude of 3200-3900 m. The initial 160 km is mountain character, from the Zhungarian Alatau and below the confluence of Kara and Chizhe River overlooks a wide intermountain plain. Other tributaries are Kara, Terekty, Laba, Balykty, Mokur and the most abundant is Koksu. After the confluence of the tributary of the Koksu River, Karatal flows through the sandy desert of the Southern Balkhash. At a distance of 40 km from the mouth, the river has a delta area of 860 km 2. According to long-term observations, the average annual discharge of the Karatal River in the Ushtobe section is 66.7 m3/s or 2.1 km3/ year.


Philosophies ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 17 ◽  
Author(s):  
Gordana Dodig-Crnkovic

The emerging contemporary natural philosophy provides a common ground for the integrative view of the natural, the artificial, and the human-social knowledge and practices. Learning process is central for acquiring, maintaining, and managing knowledge, both theoretical and practical. This paper explores the relationships between the present advances in understanding of learning in the sciences of the artificial (deep learning, robotics), natural sciences (neuroscience, cognitive science, biology), and philosophy (philosophy of computing, philosophy of mind, natural philosophy). The question is, what at this stage of the development the inspiration from nature, specifically its computational models such as info-computation through morphological computing, can contribute to machine learning and artificial intelligence, and how much on the other hand models and experiments in machine learning and robotics can motivate, justify, and inform research in computational cognitive science, neurosciences, and computing nature. We propose that one contribution can be understanding of the mechanisms of ‘learning to learn’, as a step towards deep learning with symbolic layer of computation/information processing in a framework linking connectionism with symbolism. As all natural systems possessing intelligence are cognitive systems, we describe the evolutionary arguments for the necessity of learning to learn for a system to reach human-level intelligence through evolution and development. The paper thus presents a contribution to the epistemology of the contemporary philosophy of nature.


Sign in / Sign up

Export Citation Format

Share Document