scholarly journals Texture analysis of blanched vegetables using high- and low-speed measuring methods

2017 ◽  
Vol 6 (1) ◽  
Author(s):  
Christian Schmitt ◽  
Thomas Friedl ◽  
Nadine Mattes ◽  
Uwe Grupa ◽  
Oliver Hensel

Quality reductions of raw and cooked vegetables are caused by forces generated during industrial high-speed manufacturing. However, the transferability of low-speed texture measurement methods to high speed processes is limited. Therefore, analyses with a low-speed uniaxial compression test (breaking strength σ, breaking strain ε) and a high-speed pendulum test (relative fracture height Δh) at different speeds (3.6, 4.4, 5.3 m s-1) were carried out. Textural values for potatoes, carrots and celeriacs (0 to 25 min cooking time) were recorded to compare the two measurement methods. Furthermore, whether the increase of textural values of blanched vegetables measured with low-speed methods, was also observable with high-speed methods, was also investigated. Low to medium rank correlation coefficients (rS < 0.659) between parameters of the two methods were calculated. In contrast to σ and ε, Δh-values indicate a distinct initial increase as well as textural maxima between 5.0 to 12.5 min cooking time for all tested potato and carrot varieties. On the other hand, most celeriac samples did not exhibit an increase in texture with respect to cooking time. Therefore, a textural analysis at high speeds is necessary for the prediction of textural characteristics of blanched vegetables during high-speed processing in order to reduce quality degradation.

2021 ◽  
Vol 39 (11) ◽  
Author(s):  
Thamer Kadhim Al-Abedi ◽  
Hussein Ali Mohaisen ◽  
Haitham Sahib Saeed

Recent years have witnessed many developments in business environment and they led into an increase in competitiveness among companies. These developments forced companies to rethink their styles and products in a way that meets customers' needs and maintain competitive strategies related to quality and cost. The study aimed at identifying the effect of strengthening inputs of cost schedules with (ERP) outputs for purposes of control and developing. Sample was chosen by stratified random method from total research community represented by academicians and professionals in the field of accounting reaching 50 researched individuals. Likert method was followed in designing the scale articles. By using the statistical program (SAS) in order to identify the nature of correlation. Spearman's rank correlation coefficients were calculated to examine correlation. Linear Regression approach was employed to measure intangible effect. The study concluded that using cost schedules helps improve supplying chains as a means to build trust in the relation of customer and supplier as it plays a main role in supporting value engineering through providing approximate data during the design phase. It also concluded that applying (ERP) has a great influence on accounting processes where it works on mechanizing activities, collecting, inserting, Processing, analyzing and reporting data to make accounting processes, especially those related to cost, more accurate, detailed and of a high-speed reportorial dimension.


2011 ◽  
Vol 18 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Stanisław Adamczak ◽  
Włodzimierz Makieła

Analyzing Variations in Roundness Profile Parameters During the Wavelet Decomposition Process Using the Matlab Environment Signal analysis performed during surface texture measurement frequently involves applying the Fourier transform. The method is particularly useful for assessing roundness and cylindrical profiles. Since the wavelet transform is becoming a common tool for signal analysis in many metrological applications, it is vital to evaluate its suitability for surface texture profiles. The research presented in this paper focused on signal decomposition and reconstruction during roundness profile measurement and the effect of these processes on the changes in selected roundness profile parameters. The calculations were carried out on a sample of 100 roundness profiles for 12 different forms of mother wavelets using MATLAB. The use of Spearman's rank correlation coefficients allowed us to evaluate the relationship between the two chosen criteria for selecting the optimal mother wavelet.


2018 ◽  
Author(s):  
Moshe Shay Ben-Haim ◽  
Eran Chajut ◽  
Ran Hassin ◽  
Daniel Algom

we test the hypothesis that naming an object depicted in a picture, and reading aloud an object’s name, are affected by the object’s speed. We contend that the mental representations of everyday objects and situations include their speed, and that the latter influences behavior in instantaneous and systematic ways. An important corollary is that high-speed objects are named faster than low-speed objects despite the fact that object speed is irrelevant to the naming task at hand. The results of a series of 7 studies with pictures and words support these predictions.


2021 ◽  
Vol 11 (4) ◽  
pp. 1914
Author(s):  
Pingping Han ◽  
Honghui Li ◽  
Laurence J. Walsh ◽  
Sašo Ivanovski

Dental aerosol-generating procedures produce a large amount of splatters and aerosols that create a major concern for airborne disease transmission, such as COVID-19. This study established a method to visualise splatter and aerosol contamination by common dental instrumentation, namely ultrasonic scaling, air-water spray, high-speed and low-speed handpieces. Mock dental procedures were performed on a mannequin model, containing teeth in a typodont and a phantom head, using irrigation water containing fluorescein dye as a tracer. Filter papers were placed in 10 different locations to collect splatters and aerosols, at distances ranging from 20 to 120 cm from the source. All four types of dental equipment produced contamination from splatters and aerosols. At 120 cm away from the source, the high-speed handpiece generated the greatest amount and size (656 ± 551 μm) of splatter particles, while the triplex syringe generated the largest amount of aerosols (particle size: 1.73 ± 2.23 μm). Of note, the low-speed handpiece produced the least amount and size (260 ± 142 μm) of splatter particles and the least amount of aerosols (particle size: 4.47 ± 5.92 μm) at 120 cm. All four dental AGPs produce contamination from droplets and aerosols, with different patterns of distribution. This simple model provides a method to test various preventive strategies to reduce risks from splatter and aerosols.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3119
Author(s):  
Yinjiao Su ◽  
Xuan Liu ◽  
Yang Teng ◽  
Kai Zhang

Mercury (Hg) is a toxic trace element emitted from coal conversion and utilization. Samples with different coal ranks and gangue from Ningwu Coalfield are selected and investigated in this study. For understanding dependence of mercury distribution characteristics on coalification degree, Pearson regression analysis coupled with Spearman rank correlation is employed to explore the relationship between mercury and sulfur, mercury and ash in coal, and sequential chemical extraction method is adopted to recognize the Hg speciation in the samples of coal and gangue. The measured results show that Hg is positively related to total sulfur content in coal and the affinity of Hg to different sulfur forms varies with the coalification degree. Organic sulfur has the biggest impact on Hg in peat, which becomes weak with increasing the coalification degree from lignite to bituminous coal. Sulfate sulfur is only related to Hg in peat or lignite as little content in coal. However, the Pearson linear correlation coefficients of Hg and pyritic sulfur are relatively high with 0.479 for lignite, 0.709 for sub-bituminous coal and 0.887 for bituminous coal. Hg is also related to ash content in coal, whose Pearson linear correlation coefficients are 0.504, 0.774 and 0.827 respectively, in lignite, sub-bituminous coal and bituminous coal. Furthermore, Hg distribution is directly depended on own speciation in coal. The total proportion of F2 + F3 + F4 is increased from 41.5% in peat to 87.4% in bituminous coal, but the average proportion of F5 is decreased from 56.8% in peat to 12.4% in bituminous coal. The above findings imply that both Hg and sulfur enrich in coal largely due to the migration from organic state to inorganic state with the increase of coalification degree in Ningwu Coalfield.


2020 ◽  
Vol 32 (11) ◽  
pp. 112021
Author(s):  
Jihui Ou ◽  
Jie Chen

Author(s):  
Shi Hu ◽  
Huaming Tang ◽  
Shenyao Han

AbstractIn this paper, polyvinyl chloride (PVC) coarse aggregate with different mixing contents is used to solve the problems of plastic pollution, low energy absorption capacity and poor damage integrity, which provides an important reference for PVC plastic concrete used in the initial support structures of highway tunnels and coal mine roadway. At the same time, the energy absorption characteristics and their relationship under different impact loads are studied, which provides an important reference for predicting the energy absorption characteristics of concrete under other PVC aggregate content or higher impact speed. This study replaced natural coarse aggregate in concrete with different contents and equal volume of well-graded flaky PVC particles obtained by crushing PVC soft board. Also, slump, compression, and splitting strength tests, a free falling low-speed impact test of steel balls and a high-speed impact compression test of split Hopkinson pressure bar (SHPB) were carried out. Results demonstrate that the static and dynamic compressive strength decreases substantially, and the elastic modulus and slump decrease slowly with the increase of the mixing amount of PVC aggregate (0–30%). However, the energy absorption rate under low-speed impact and the specific energy absorption per MPa under high-speed impact increase obviously, indicating that the energy absorption capacity is significantly enhanced. Regardless of the mixing amount of PVC aggregate, greater strain rate can significantly enhance the dynamic compressive strength and the specific energy absorption per MPa. After the uniaxial compression test or the SHPB impact test, the relative integrity of the specimen is positively correlated with the mixing amount of PVC aggregate. In addition, the specimens are seriously damaged with the increase of the impact strain rate. When the PVC aggregate content is 20%, the compressive strength and splitting strength of concrete are 33.8 MPa and 3.26 MPa, respectively, the slump is 165 mm, the energy absorption rate under low-speed impact is 89.5%, the dynamic compressive strength under 0.65 Mpa impact air pressure is 58.77 mpa, and the specific energy absorption value per MPa is 13.33, which meets the requirements of shotcrete used in tunnel, roadway support and other impact loads. There is a linear relationship between the energy absorption characteristics under low-speed impact and high-speed impact. The greater the impact pressure, the larger the slope of the fitting straight line. The slope and intercept of the fitting line also show a good linear relationship with the increase of impact pressure. The conclusions can be used to predict the energy absorption characteristics under different PVC aggregate content or higher-speed impact pressure, which can provide important reference for safer, more economical, and environmental protection engineering structure design.


Sign in / Sign up

Export Citation Format

Share Document