scholarly journals Bonding nature of the amorphous structure studied by a combination of cutoff and electronic localization function

2016 ◽  
Vol 65 (17) ◽  
pp. 173101
Author(s):  
Wang Xin-Yang ◽  
Chen Nian-Ke ◽  
Wang Xue-Peng ◽  
Zhang Bin ◽  
Chen Zhi-Hong ◽  
...  
Author(s):  
P. S. Kotval ◽  
C. J. Dewit

The structure of Ta2O5 has been described in the literature in several different crystallographic forms with varying unit cell lattice parameters. Earlier studies on films of Ta2O5 produced by anodization of tantalum have revealed structural features which are not consistent with the parameters of “bulk” Ta2O5 crystalsFilms of Ta2O5 were prepared by anodizing a well-polished surface of pure tantalum sheet. The anodic films were floated off in distilled water, collected on grids, dried and directly examined in the electron microscope. In all cases the films were found to exhibit diffraction patterns representative of an amorphous structure. Using beam heating in the electron microscope, recrystallization of the amorphous films can be accomplished as shown in Fig. 1. As suggested by earlier work, the recrystallized regions exhibit diffraction patterns which consist of hexagonal arrays of main spots together with subsidiary rows of super lattice spots which develop as recrystallization progresses (Figs. 2a and b).


Author(s):  
G. M. Michal ◽  
T. K. Glasgow ◽  
T. J. Moore

Large additions of B to Fe-Ni alloys can lead to the formation of an amorphous structure, if the alloy is rapidly cooled from the liquid state to room temperature. Isothermal aging of such structures at elevated temperatures causes crystallization to occur. Commonly such crystallization pro ceeds by the nucleation and growth of spherulites which are spherical crystalline bodies of radiating crystal fibers. Spherulite features were found in the present study in a rapidly solidified alloy that was fully crysstalline as-cast. This alloy was part of a program to develop an austenitic steel for elevated temperature applications by strengthening it with TiB2. The alloy contained a relatively large percentage of B, not to induce an amorphous structure, but only as a consequence of trying to obtain a large volume fracture of TiB2 in the completely processed alloy. The observation of spherulitic features in this alloy is described herein. Utilization of the large range of useful magnifications obtainable in a modern TEM, when a suitably thinned foil is available, was a key element in this analysis.


Author(s):  
G. A. Bertero ◽  
W.H. Hofmeister ◽  
N.D. Evans ◽  
J.E. Wittig ◽  
R.J. Bayuzick

Rapid solidification of Ni-Nb alloys promotes the formation of amorphous structure. Preliminary results indicate promising elastic properties and high fracture strength for the metallic glass. Knowledge of the thermal stability of the amorphus alloy and the changes in properties with temperature is therefore of prime importance. In this work rapidly solidified Ni-Nb alloys were analyzed with transmission electron microscopy (TEM) during in-situ heating experiments and after isothermal annealing of bulk samples. Differential thermal analysis (DTA), scanning electron microscopy (SEM) and x-ray diffraction (XRD) techniques were also used to characterize both the solidification and devitrification sequences.Samples of Ni-44 at.% Nb were electromagnetically levitated, melted, and rapidly solidified by splatquenching between two copper chill plates. The resulting samples were 100 to 200 μm thick discs of 2 to 3 cm diameter. TEM specimens were either ion-milled or alternatively electropolished in a methanol-10% sulphuric acid solution at 20 V and −40°C.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 978
Author(s):  
Ming-Jie Zhao ◽  
Zhi-Xuan Zhang ◽  
Chia-Hsun Hsu ◽  
Xiao-Ying Zhang ◽  
Wan-Yu Wu ◽  
...  

Indium oxide (In2O3) film has excellent optical and electrical properties, which makes it useful for a multitude of applications. The preparation of In2O3 film via atomic layer deposition (ALD) method remains an issue as most of the available In-precursors are inactive and thermally unstable. In this work, In2O3 film was prepared by ALD using a remote O2 plasma as oxidant, which provides highly reactive oxygen radicals, and hence significantly enhancing the film growth. The substrate temperature that determines the adsorption state on the substrate and reaction energy of the precursor was investigated. At low substrate temperature (100–150 °C), the ratio of chemically adsorbed precursors is low, leading to a low growth rate and amorphous structure of the films. An amorphous-to-crystalline transition was observed at 150–200 °C. An ALD window with self-limiting reaction and a reasonable film growth rate was observed in the intermediate temperature range of 225–275 °C. At high substrate temperature (300–350 °C), the film growth rate further increases due to the decomposition of the precursors. The resulting film exhibits a rough surface which consists of coarse grains and obvious grain boundaries. The growth mode and properties of the In2O3 films prepared by plasma-enhanced ALD can be efficiently tuned by varying the substrate temperature.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 821
Author(s):  
Aneeqa Bashir ◽  
Mehwish Farooq ◽  
Abdul Malik ◽  
Shahzad Naseem ◽  
Arshad Saleem Bhatti

An environmentally friendlier solution processing has been introduced to fabricate zirconium oxide (ZrO2) films on quartz substrates, using spin coating of simple water-based solution. The films cured with UV-A = 330 nm for different times (40, 80, 120 min) were investigated for structural and optical properties and compared with thermally annealed film (at 350 °C). XRD and Raman spectroscopy showed amorphous structure in all the samples with no significant phase transformation with UV-A exposure. AFM microscopy showed smooth and crack free films with surface roughness ≤2 nm that reduced with UV-A exposure. Ultraviolet-visible (UV–Vis) spectroscopy demonstrated optical transmittance ≥88% and energy band gap variations as 4.52–4.70 eV. Optical constants were found from spectroscopic ellipsometry (SE). The refractive index (n) values, measured at 470 nm increased from 1.73 to 2.74 as the UV-A exposure prolonged indicating densification and decreasing porosity of the films. The extinction coefficient k decreased from 0.32 to 0.19 indicating reduced optical losses in the films under the UV-A exposure. The photoluminescence (PL) spectra exhibited more pronounced UV emissions which grew intense with UV-A exposure thereby improving the film quality. It is concluded that UV-A irradiation can significantly enhance the optical properties of ZrO2 films with minimal changes induced in the structure as compared to thermally treated film. Moreover, the present work indicates that water-based solution processing has the potential to produce high-quality ZrO2 films for low cost and environmental friendlier technologies. The work also highlights the use of UV-A radiations as an alternate to high temperature thermal annealing for improved quality.


2021 ◽  
Vol 103 (3) ◽  
Author(s):  
A. D. N. James ◽  
E. I. Harris-Lee ◽  
A. Hampel ◽  
M. Aichhorn ◽  
S. B. Dugdale

Sign in / Sign up

Export Citation Format

Share Document