film growth rate
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 0)

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2047
Author(s):  
Umme Farva ◽  
Hyeong Woo Lee ◽  
RiNa Kim ◽  
Dong-Gun Lee ◽  
Jeha Kim ◽  
...  

Recently, indium oxide (In2O3) thin films have emerged as a promising electron transport layer (ETL) for perovskite solar cells; however, solution-processed In2O3 ETL suffered from poor morphology, pinholes, and required annealing at high temperatures. This research aims to carry out and prepare pinhole-free, transparent, and highly conductive In2O3 thin films via atomic layer deposition (ALD) seizing efficiently as an ETL. In order to explore the growth-temperature-dependent properties of In2O3 thin film, it was fabricated by ALD using the triethyl indium (Et3In) precursor. The detail of the ALD process at 115–250 °C was studied through the film growth rate, crystal structure, morphology, composition, and optical and electrical properties. The film growth rate increased from 0.009 nm/cycle to 0.088 nm/cycle as the growth temperature rose from 115 °C to 250 °C. The film thickness was highly uniform, and the surface roughness was below 1.6 nm. Our results confirmed that film’s structural, optical and electrical properties directly depend on film growth temperature. Film grown at ≥ 200 °C exhibited a polycrystalline cubic structure with almost negligible carbon impurities. Finally, the device ALD-In2O3 film deposited at 250 °C exhibited a power conversion efficiency of 10.97% superior to other conditions and general SnO2 ETL.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 978
Author(s):  
Ming-Jie Zhao ◽  
Zhi-Xuan Zhang ◽  
Chia-Hsun Hsu ◽  
Xiao-Ying Zhang ◽  
Wan-Yu Wu ◽  
...  

Indium oxide (In2O3) film has excellent optical and electrical properties, which makes it useful for a multitude of applications. The preparation of In2O3 film via atomic layer deposition (ALD) method remains an issue as most of the available In-precursors are inactive and thermally unstable. In this work, In2O3 film was prepared by ALD using a remote O2 plasma as oxidant, which provides highly reactive oxygen radicals, and hence significantly enhancing the film growth. The substrate temperature that determines the adsorption state on the substrate and reaction energy of the precursor was investigated. At low substrate temperature (100–150 °C), the ratio of chemically adsorbed precursors is low, leading to a low growth rate and amorphous structure of the films. An amorphous-to-crystalline transition was observed at 150–200 °C. An ALD window with self-limiting reaction and a reasonable film growth rate was observed in the intermediate temperature range of 225–275 °C. At high substrate temperature (300–350 °C), the film growth rate further increases due to the decomposition of the precursors. The resulting film exhibits a rough surface which consists of coarse grains and obvious grain boundaries. The growth mode and properties of the In2O3 films prepared by plasma-enhanced ALD can be efficiently tuned by varying the substrate temperature.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Chin-Chiuan Kuo ◽  
Chun-Hui Lin ◽  
Jing-Tang Chang ◽  
Yu-Tse Lin

The Zr film microstructure is highly influenced by the energy of the plasma species during the deposition process. The influences of the discharge pulse width, which is the key factor affecting ionization of sputtered species in the high-power impulse magnetron sputtering (HiPIMS) process, on the obtained microstructure of films is investigated in this research. The films deposited at different argon pressure and substrate biasing are compared. With keeping the same average HiPIMS power and duty cycle, the film growth rate of the Zr film decreases with increasing argon pressure and enhancing substrate biasing. In addition, the film growth rate decreases with the elongating HiPIMS pulse width. For the deposition at 1.2 Pa argon, extending the pulse width not only intensifies the ion flux toward the substrate but also increases the fraction of highly charged ions, which alter the microstructure of films from individual hexagonal prism columns into a tightly connected irregular column. Increasing film density leads to higher hardness. Sufficient synchronized negative substrate biasing and longer pulse width, which supports higher mobility of adatoms, causes the preferred orientation of hexagonal α-phase Zr films from (0 0 0 2) to (1 0 1¯ 1). Unlike the deposition at 1.2 Pa, highly charged ions are also found during the short HiPIMS pulse width at 0.8 Pa argon.


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 736
Author(s):  
Gil-Su Jang ◽  
Du-Yun Kim ◽  
Nong-Moon Hwang

The possibility that charged nanoparticles (CNPs) are generated in the gas phase during direct current (DC) magnetron sputtering of Ag is studied. Sputtered Ag particles could be captured on an ultrathin amorphous carbon membrane for transmission electron microscopy (TEM) observation. It is confirmed that the average particle size and the total area of deposition under the condition of the positive bias applied to the substrate are bigger than those under the condition of the negative bias applied to the substrate. The results indicate that some of the sputtered Ag particles are negatively charged. To evaluate the contribution of negatively-charged particles to the film growth, Ag thin films were deposited for 30 min on the Si substrate with the substrate biases of −300, 0 and +300 V and analyzed by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and four-point probe. When +300 V was applied to the substrate, the film growth rate was highest with the film thickness of 85.0 nm, the crystallinity was best with the smallest full width at half maximum (FWHM) value of 0.44 and the resistivity was smallest with 3.67 μΩ·cm. In contrast, when −300 V was applied to the substrate, the film growth rate was lowest with the film thickness of 68.9 nm, the crystallinity was worst with the largest FWHM value of 0.53 and the resistivity was largest with 8.87 μΩ·cm. This result indicates that the charge plays an important role in film growth and can be a new process parameter in sputtering.


2017 ◽  
Vol 31 (6) ◽  
pp. 5798-5805 ◽  
Author(s):  
Shane A. Morrissy ◽  
Angus J. McKenzie ◽  
Brendan F. Graham ◽  
Michael L. Johns ◽  
Eric F. May ◽  
...  

2014 ◽  
Vol 550 ◽  
pp. 715-722 ◽  
Author(s):  
V.F. Mitin ◽  
V.K. Lazarov ◽  
L. Lari ◽  
P.M. Lytvyn ◽  
V.V. Kholevchuk ◽  
...  

2013 ◽  
Vol 2 (10) ◽  
pp. P91-P93 ◽  
Author(s):  
J. R. Kim ◽  
H. Lim ◽  
S. Park ◽  
Y. J. Choi ◽  
S. Suh ◽  
...  

2011 ◽  
Vol 382 ◽  
pp. 300-302
Author(s):  
Fei Fei Xu ◽  
Wen Min Wang ◽  
Zhang Lin Li ◽  
Hao Yan

Polypyrrole (PPyr) film was synthesized in a supercritic al carbon dioxide ( ScCO2 ) / ionic liquid biphase system with electrochemicalmethod for the first time. The PPyr films synthesized in the ScCO2 / ionic liquid biphase system have smooth and uniform surface better than that obtained from pure ionic liquid. As the pressure of carbon dioxide is increased, the film growth rate is decreased and the film surface becomes more smooth and uniform.


Sign in / Sign up

Export Citation Format

Share Document