scholarly journals Adaptability of non-genetic diversity in bacterial chemotaxis

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Nicholas W Frankel ◽  
William Pontius ◽  
Yann S Dufour ◽  
Junjiajia Long ◽  
Luis Hernandez-Nunez ◽  
...  

Bacterial chemotaxis systems are as diverse as the environments that bacteria inhabit, but how much environmental variation can cells tolerate with a single system? Diversification of a single chemotaxis system could serve as an alternative, or even evolutionary stepping-stone, to switching between multiple systems. We hypothesized that mutations in gene regulation could lead to heritable control of chemotactic diversity. By simulating foraging and colonization of E. coli using a single-cell chemotaxis model, we found that different environments selected for different behaviors. The resulting trade-offs show that populations facing diverse environments would ideally diversify behaviors when time for navigation is limited. We show that advantageous diversity can arise from changes in the distribution of protein levels among individuals, which could occur through mutations in gene regulation. We propose experiments to test our prediction that chemotactic diversity in a clonal population could be a selectable trait that enables adaptation to environmental variability.

2004 ◽  
Vol 68 (2) ◽  
pp. 301-319 ◽  
Author(s):  
Hendrik Szurmant ◽  
George W. Ordal

SUMMARY The study of chemotaxis describes the cellular processes that control the movement of organisms toward favorable environments. In bacteria and archaea, motility is controlled by a two-component system involving a histidine kinase that senses the environment and a response regulator, a very common type of signal transduction in prokaryotes. Most insights into the processes involved have come from studies of Escherichia coli over the last three decades. However, in the last 10 years, with the sequencing of many prokaryotic genomes, it has become clear that E. coli represents a streamlined example of bacterial chemotaxis. While general features of excitation remain conserved among bacteria and archaea, specific features, such as adaptational processes and hydrolysis of the intracellular signal CheY-P, are quite diverse. The Bacillus subtilis chemotaxis system is considerably more complex and appears to be similar to the one that existed when the bacteria and archaea separated during evolution, so that understanding this mechanism should provide insight into the variety of mechanisms used today by the broad sweep of chemotactic bacteria and archaea. However, processes even beyond those used in E. coli and B. subtilis have been discovered in other organisms. This review emphasizes those used by B. subtilis and these other organisms but also gives an account of the mechanism in E. coli.


1986 ◽  
pp. 151-180 ◽  
Author(s):  
Martin Rosenberg ◽  
Mary Brawner ◽  
Jessica Gorman ◽  
Mitchell Reff

2015 ◽  
Author(s):  
Marjon GJ de Vos ◽  
Alexandre Dawid ◽  
Vanda Sunderlikova ◽  
Sander J Tans

Epistatic interactions can frustrate and shape evolutionary change. Indeed, phenotypes may fail to evolve because essential mutations can only be selected positively if fixed simultaneously. How environmental variability affects such constraints is poorly understood. Here we studied genetic constraints in fixed and fluctuating environments, using theEscherichia coli lacoperon as a model system for genotype-environment interactions. The data indicated an apparent paradox: in different fixed environments, mutational trajectories became trapped at sub-optima where no further improvements were possible, while repeated switching between these same environments allowed unconstrained adaptation by continuous improvements. Pervasive cross-environmental trade-offs transformed peaks into valleys upon environmental change, thus enabling escape from entrapment. This study shows that environmental variability can lift genetic constraint, and that trade-offs not only impede but can also facilitate adaptive evolution.


2015 ◽  
Vol 13 (02) ◽  
pp. 1550002
Author(s):  
Mohammad-Hadi Foroughmand-Araabi ◽  
Bahram Goliaei ◽  
Kasra Alishahi ◽  
Mehdi Sadeghi ◽  
Sama Goliaei

Although it is known that synonymous codons are not chosen randomly, the role of the codon usage in gene regulation is not clearly understood, yet. Researchers have investigated the relation between the codon usage and various properties, such as gene regulation, translation rate, translation efficiency, mRNA stability, splicing, and protein domains. Recently, a universal codon usage based mechanism for gene regulation is proposed. We studied the role of protein sequence patterns on the codons usage by related genes. Considering a subsequence of a protein that matches to a pattern or motif, we showed that, parts of the genes, which are translated to this subsequence, use specific ratios of synonymous codons. Also, we built a multinomial logistic regression statistical model for codon usage, which considers the effect of patterns on codon usage. This model justifies the observed codon usage preference better than the classic organism dependent codon usage. Our results showed that the codon usage plays a role in controlling protein levels, for genes that participate in a specific biological function. This is the first time that this phenomenon is reported.


Author(s):  
Jie Zhan ◽  
Xin Tan ◽  
Xiaoyuan Wang

Cronobacter sakazakii is a known foodborne opportunistic pathogen that can affect the intestinal health of infants. Despite undergoing complex manufacturing processes and low water concentration in the finished product, infant formula has been associated with Cronobacter infections, suggesting that C. sakazakii’s pathogenicity may be related to its tolerance to stress. In this study, the effect of the stringent starvation protein A (SspA), which plays an important role in E. coli cellular survival under environmental stresses, on the stress tolerance of C. sakazakii BAA894 was investigated by creating an sspA-knockout mutant. The effects of this mutation on the acid, desiccation and drug tolerance were assessed, and results showed that acid tolerance decreased, while desiccation tolerance increased in LB and decreased in M9. Moreover, the MICs of 10 antibiotics in LB medium and 8 antibiotics in M9 medium were determined and compared of the wild-type and ΔsspA. Transcriptome analysis showed that 27.21% or 37.78% of the genes in ΔsspA were significantly differentially expressed in LB or M9 media, the genes relevant to microbial metabolism in diverse environments and bacterial chemotaxis were detailed analyzed. The current study contributes towards an improved understanding of the role of SspA in C. sakazakii BAA894 stress tolerance.


<em>Abstract</em>.—Stream fishes carry out their life histories across broad spatial and temporal scales, leading to spatially structured populations. Therefore, incorporating metapopulation dynamics into models of stream fish populations may improve our ability to understand mechanisms regulating them. First, we reviewed empirical research on metapopulation dynamics in the stream fish ecology literature and found 31 papers that used the metapopulation framework. The majority of papers applied no specific metapopulation model, or included space only implicitly. Although parameterization of spatially realistic models is challenging, we suggest that stream fish ecologists should incorporate space into models and recognize that metapopulation types may change across scales. Second, we considered metacommunity theory, which addresses how trade-offs among dispersal, environmental heterogeneity, and biotic interactions structure communities across spatial scales. There are no explicit tests of metacommunity theory using stream fishes to date, so we used data from our research in a Great Plains stream to test the utility of these paradigms. We found that this plains fish metacommunity was structured mainly by spatial factors related to dispersal opportunity and, to a lesser extent, by environmental heterogeneity. Currently, metacommunity models are more heuristic than predictive. Therefore, we propose that future stream fish metacommunity research should focus on developing testable hypotheses that incorporate stream fish life history attributes, and seasonal environmental variability, across spatial scales. This emerging body of research is likely to be valuable not only for basic stream fish ecological research, but also multispecies conservation and management.


2020 ◽  
Vol 75 (5) ◽  
pp. 1151-1158
Author(s):  
Corey S Suelter ◽  
Nancy D Hanson

Abstract Background Virulence genes and the expression of resistance mechanisms undoubtedly play a role in the successful spread of the pandemic clone Escherichia coli ST131. Porin down-regulation is a chromosomal mechanism associated with antibiotic resistance. Translation of porin proteins can be impacted by modifications in mRNA half-life and the interaction among small RNAs (sRNAs), the porin transcript and the sRNA chaperone Hfq. Modifications in the translatability of porin proteins could impact the fitness and therefore the success of E. coli ST131 isolates in the presence of antibiotic. Objectives To identify differences in the translatability of OmpC and OmpF porins for different STs of E. coli by comparing steady-state RNA levels, mRNA half-life, regulatory sRNA expression and protein production. Methods RNA expression was evaluated using real-time RT–PCR and OmpC mRNA half-life by northern blotting. OmpC, OmpF and Hfq protein levels were evaluated by immunoblotting. Results Differences between ST131 and non-ST131 isolates included: (i) the level of OmpC RNA and protein produced with mRNA expression higher for ST131 but OmpC protein levels lower compared with non-ST131 isolates; (ii) OmpC mRNA half-life (21–30 min for ST131 isolates compared with &lt;2–23 min for non-ST131 isolates); and (iii) levels of the sRNA MicC (2- to 120-fold for ST131 isolates compared with −4- to 70-fold for non-ST131 isolates). Conclusions Mechanisms involved in the translatability of porin proteins differed among different STs of E. coli. These differences could provide a selective advantage to ST131 E. coli when confronted with an antibiotic-rich environment.


2020 ◽  
Vol 202 (14) ◽  
Author(s):  
Timofey D. Arapov ◽  
Rafael Castañeda Saldaña ◽  
Amanda L. Sebastian ◽  
W. Keith Ray ◽  
Richard F. Helm ◽  
...  

ABSTRACT Chemotaxis systems enable microbes to sense their immediate environment, moving toward beneficial stimuli and away from those that are harmful. In an effort to better understand the chemotaxis system of Sinorhizobium meliloti, a symbiont of the legume alfalfa, the cellular stoichiometries of all ten chemotaxis proteins in S. meliloti were determined. A combination of quantitative immunoblot and mass spectrometry revealed that the protein stoichiometries in S. meliloti varied greatly from those in Escherichia coli and Bacillus subtilis. To compare protein ratios to other systems, values were normalized to the central kinase CheA. All S. meliloti chemotaxis proteins exhibited increased ratios to various degrees. The 10-fold higher molar ratio of adaptor proteins CheW1 and CheW2 to CheA might result in the formation of rings in the chemotaxis array that consist of only CheW instead of CheA and CheW in a 1:1 ratio. We hypothesize that the higher ratio of CheA to the main response regulator CheY2 is a consequence of the speed-variable motor in S. meliloti, instead of a switch-type motor. Similarly, proteins involved in signal termination are far more abundant in S. meliloti, which utilizes a phosphate sink mechanism based on CheA retrophosphorylation to inactivate the motor response regulator versus CheZ-catalyzed dephosphorylation as in E. coli and B. subtilis. Finally, the abundance of CheB and CheR, which regulate chemoreceptor methylation, was increased compared to CheA, indicative of variations in the adaptation system of S. meliloti. Collectively, these results mark significant differences in the composition of bacterial chemotaxis systems. IMPORTANCE The symbiotic soil bacterium Sinorhizobium meliloti contributes greatly to host-plant growth by fixing atmospheric nitrogen. The provision of nitrogen as ammonium by S. meliloti leads to increased biomass production of its legume host alfalfa and diminishes the use of environmentally harmful chemical fertilizers. To better understand the role of chemotaxis in host-microbe interaction, a comprehensive catalogue of the bacterial chemotaxis system is vital, including its composition, function, and regulation. The stoichiometry of chemotaxis proteins in S. meliloti has very few similarities to the systems in Escherichia coli and Bacillus subtilis. In addition, total amounts of proteins are significantly lower. S. meliloti exhibits a chemotaxis system distinct from known models by incorporating new proteins as exemplified by the phosphate sink mechanism.


2018 ◽  
Vol 28 (11) ◽  
pp. 2237-2273 ◽  
Author(s):  
Rachidi B. Salako ◽  
Wenxian Shen

The current series of three papers is concerned with the asymptotic dynamics in the following parabolic–elliptic chemotaxis system with space- and time-dependent logistic source: [Formula: see text] where [Formula: see text] is a positive integer, [Formula: see text] and [Formula: see text] are positive constants, and the functions [Formula: see text] and [Formula: see text] are positive and bounded. In the first of the series, we investigate the persistence and asymptotic spreading in [Formula: see text]. To this end, under some explicit condition on the parameters, we first show that [Formula: see text] has a unique nonnegative time global classical solution [Formula: see text] with [Formula: see text] for every [Formula: see text] and every nonnegative bounded and uniformly continuous initial function [Formula: see text]. Next we show the pointwise persistence phenomena of the solutions in the sense that, for any solution [Formula: see text] of [Formula: see text] with strictly positive initial function [Formula: see text], there are [Formula: see text] such that [Formula: see text] and show the uniform persistence phenomena of solutions in the sense that there are [Formula: see text] such that for any strictly positive initial function [Formula: see text], there is [Formula: see text] such that [Formula: see text] We then discuss the spreading properties of solutions to [Formula: see text] with compactly supported initial function and prove that there are positive constants [Formula: see text] such that for every [Formula: see text] and every nonnegative initial function [Formula: see text] with nonempty compact support, we have that [Formula: see text] and [Formula: see text] We also discuss the spreading properties of solutions to [Formula: see text] with front-like initial functions. In the second and third of the series, we will study the existence, uniqueness, and stability of strictly positive entire solutions of [Formula: see text] and the existence of transition fronts of [Formula: see text], respectively.


Sign in / Sign up

Export Citation Format

Share Document