scholarly journals Measurement of average decoding rates of the 61 sense codons in vivo

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Justin Gardin ◽  
Rukhsana Yeasmin ◽  
Alisa Yurovsky ◽  
Ying Cai ◽  
Steve Skiena ◽  
...  

Most amino acids can be encoded by several synonymous codons, which are used at unequal frequencies. The significance of unequal codon usage remains unclear. One hypothesis is that frequent codons are translated relatively rapidly. However, there is little direct, in vivo, evidence regarding codon-specific translation rates. In this study, we generate high-coverage data using ribosome profiling in yeast, analyze using a novel algorithm, and deduce events at the A- and P-sites of the ribosome. Different codons are decoded at different rates in the A-site. In general, frequent codons are decoded more quickly than rare codons, and AT-rich codons are decoded more quickly than GC-rich codons. At the P-site, proline is slow in forming peptide bonds. We also apply our algorithm to short footprints from a different conformation of the ribosome and find strong amino acid-specific (not codon-specific) effects that may reflect interactions with the exit tunnel of the ribosome.

Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1649-1663
Author(s):  
Oliver Z Nanassy ◽  
Kelly T Hughes

Abstract The Hin recombinase catalyzes a site-specific recombination reaction that results in the reversible inversion of a 1-kbp segment of the Salmonella chromosome. The DNA inversion reaction catalyzed by the Salmonella Hin recombinase is a dynamic process proceeding through many intermediate stages, requiring multiple DNA sites and the Fis accessory protein. Biochemical analysis of this reaction has identified intermediate steps in the inversion reaction but has not yet revealed the process by which transition from one step to another occurs. Because transition from one reaction step to another proceeds through interactions between specific amino acids, and between amino acids and DNA bases, it is possible to study these transitions through mutational analysis of the proteins involved. We isolated a large number of mutants in the Hin recombinase that failed to carry out the DNA exchange reaction. We generated genetic tools that allowed the assignment of these mutants to specific transition steps in the recombination reaction. This genetic analysis, combined with further biochemical analysis, allowed us to define contributions by specific amino acids to individual steps in the DNA inversion reaction. Evidence is also presented in support of a model that Fis protein enhances the binding of Hin to the hixR recombination site. These studies identified regions within the Hin recombinase involved in specific transition steps of the reaction and provided new insights into the molecular details of the reaction mechanism.


1976 ◽  
Vol 69 (2) ◽  
pp. 264-274 ◽  
Author(s):  
G Bergtrom ◽  
H Laufer ◽  
R Rogers

Fourth instar larvae of Chironomus thummi were permitted to incorporate labeled amino acids and/or sigma-aminolevulinic acid (sigma-ALA) in vivo and in organ culture. The products secreted into the hemolymph or into the culture medium were examined by acrylamide gel electrophoresis. Nine electrophoretic bands can be resolved as hemoglobins without staining. When gels are sliced for scintillation counting, incorporated amino acids and sigma-ALA are shown to be associated primarily with the same nine hemoglobin bands, suggesting that hemoglobins are assembled and secreted. Staining of gels with Coomassie brilliant blue reveals that there are several bands in addition to the visible hemoglobins. These bands incorporate amino acids, but not sigma-ALA, suggesting that they are non-heme proteins. The results of culturing isolated salivary glands, gut, and fat body demonstrate that the fat body is the major site of hemoglobin synthesis and secretion. Labeled products of the gut represent about 5% of the total hemoglobins produced by the tissues, while no hemoglobins are produced by the salivary glands. Although nine hemoglobins are visibly resolved on gels, labeling techniques reveal as many as 14 hemoglobins. This is the first demonstration of hemoglobin synthesis by specific tissues in culture in an invertebrate.


2014 ◽  
Author(s):  
Carlo G. Artieri ◽  
Hunter B. Fraser

The recent advent of ribosome profiling ? sequencing of short ribosome-bound fragments of mRNA ? has offered an unprecedented opportunity to interrogate the sequence features responsible for modulating translational rates. Nevertheless, numerous analyses of the first riboprofiling dataset have produced equivocal and often incompatible results. Here we analyze three independent yeast riboprofiling data sets, including two with much higher coverage than previously available, and find that all three show substantial technical sequence biases that confound interpretations of ribosomal occupancy. After accounting for these biases, we find no effect of previously implicated factors on ribosomal pausing. Rather, we find that incorporation of proline, whose unique side-chain stalls peptide synthesis in vitro, also slows the ribosome in vivo. We also reanalyze a recent method that reported positively charged amino acids as the major determinant of ribosomal stalling and demonstrate that its assumptions lead to false signals of stalling in low-coverage data. Our results suggest that any analysis of riboprofiling data should account for sequencing biases and sparse coverage. To this end, we establish a robust methodology that enables analysis of ribosome profiling data without prior assumptions regarding which positions spanned by the ribosome cause stalling.


1995 ◽  
Vol 60 (12) ◽  
pp. 2170-2177 ◽  
Author(s):  
Zdenko Procházka ◽  
Jiřina Slaninová
Keyword(s):  

Solid phase technique on p-methylbenzhydrylamine resin was used for the synthesis of four analogs of oxytocin and four analogs of vasopressin with the non-coded amino acids L- or D- and 1- or 2-naphthylalanine and D-homoarginine. [L-1-Nal2]oxytocin, [D-1-Nal2]oxytocin, [L-2-Nal2]oxytocin, [D-2-Nal2]oxytocin, [L-1-Nal2, D-Har8]vasopressin, [D-1-Nal2, D-Har8]vasopressin, [L-2-Nal2, D-Har8]vasopressin and [D-2-Nal2, D-Har8]vasopressin were synthesized. All eight analogs were found to be uterotonic inhibitors in vitro and in vivo. Analogs with 2-naphthylalanine are stronger inhibitors, particularly in the vasopressin series than the analogs with 1-naphthylalanine. Analogs with 1-naphthylalanine have no activity in the pressor test, analogs with 2-naphthylalanine are weak pressor inhibitors.


1997 ◽  
Vol 272 (6) ◽  
pp. G1530-G1539 ◽  
Author(s):  
C. Cherbuy ◽  
B. Darcy-Vrillon ◽  
L. Posho ◽  
P. Vaugelade ◽  
M. T. Morel ◽  
...  

We have reported previously that a high glycolytic capacity develops soon after birth in enterocytes isolated from suckling newborn pigs. In the present work, we investigated whether such metabolic changes could affect intestinal glucose utilization in vivo and examined possible variations in glucose metabolism along the small intestine. Glucose utilization by individual tissues was assessed using the 2-deoxyglucose technique. The overall glucose utilization rate was doubled in suckling vs. fasting 2-day-old pigs because of significantly higher rates in all tissues studied, except for the brain. In parallel, enterocytes were isolated from the proximal, medium, or distal jejunoileum of newborn vs. 2-day-old pigs and assessed for their capacity to utilize, transport, and phosphorylate glucose. Intestinal glucose consumption accounted for approximately 15% of glucose turnover rate in suckling vs. 8% in fasting pigs. Moreover, there was a proximal-to-distal gradient of glucose utilization in the intestinal mucosa of suckling pigs. Such a gradient was also evidenced on isolated enterocytes. The stimulation of both hexokinase activity (HK2 isoform) and basolateral glucose transporter (GLUT2), as observed in the proximal jejunum, could account for such a site-specific effect of suckling.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 481
Author(s):  
Gemma G. Martínez-García ◽  
Raúl F. Pérez ◽  
Álvaro F. Fernández ◽  
Sylvere Durand ◽  
Guido Kroemer ◽  
...  

Autophagy is an essential protective mechanism that allows mammalian cells to cope with a variety of stressors and contributes to maintaining cellular and tissue homeostasis. Due to these crucial roles and also to the fact that autophagy malfunction has been described in a wide range of pathologies, an increasing number of in vivo studies involving animal models targeting autophagy genes have been developed. In mammals, total autophagy inactivation is lethal, and constitutive knockout models lacking effectors of this route are not viable, which has hindered so far the analysis of the consequences of a systemic autophagy decline. Here, we take advantage of atg4b−/− mice, an autophagy-deficient model with only partial disruption of the process, to assess the effects of systemic reduction of autophagy on the metabolome. We describe for the first time the metabolic footprint of systemic autophagy decline, showing that impaired autophagy results in highly tissue-dependent alterations that are more accentuated in the skeletal muscle and plasma. These changes, which include changes in the levels of amino-acids, lipids, or nucleosides, sometimes resemble those that are frequently described in conditions like aging, obesity, or cardiac damage. We also discuss different hypotheses on how impaired autophagy may affect the metabolism of several tissues in mammals.


Separations ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 112
Author(s):  
Marine Morvan ◽  
Ivan Mikšík

Like many biological compounds, proteins are found primarily in their homochiral form. However, homochirality is not guaranteed throughout life. Determining their chiral proteinogenic sequence is a complex analytical challenge. This is because certain D-amino acids contained in proteins play a role in human health and disease. This is the case, for example, with D-Asp in elastin, β-amyloid and α-crystallin which, respectively, have an action on arteriosclerosis, Alzheimer's disease and cataracts. Sequence-dependent and sequence-independent are the two strategies for detecting the presence and position of D-amino acids in proteins. These methods rely on enzymatic digestion by a site-specific enzyme and acid hydrolysis in a deuterium or tritium environment to limit the natural racemization of amino acids. In this review, chromatographic and electrophoretic techniques, such as LC, SFC, GC and CE, will be recently developed (2018–2020) for the enantioseparation of amino acids and peptides. For future work, the discovery and development of new chiral stationary phases and derivatization reagents could increase the resolution of chiral separations.


Sign in / Sign up

Export Citation Format

Share Document