scholarly journals Regulation by the quorum sensor from Vibrio indicates a receptor function for the membrane anchors of adenylate cyclases

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Stephanie Beltz ◽  
Jens Bassler ◽  
Joachim E Schultz

Adenylate cyclases convert intra- and extracellular stimuli into a second messenger cAMP signal. Many bacterial and most eukaryotic ACs possess membrane anchors with six transmembrane spans. We replaced the anchor of the AC Rv1625c by the quorum-sensing receptor from Vibrio harveyi which has an identical 6TM design and obtained an active, membrane-anchored AC. We show that a canonical class III AC is ligand-regulated in vitro and in vivo. At 10 µM, the cholera-autoinducer CAI-1 stimulates activity 4.8-fold. A sequence based clustering of membrane domains of class III ACs and quorum-sensing receptors established six groups of potential structural and functional similarities. The data support the notion that 6TM AC membrane domains may operate as receptors which directly regulate AC activity as opposed and in addition to the indirect regulation by GPCRs in eukaryotic congeners. This adds a completely novel dimension of potential AC regulation in bacteria and vertebrates.

2011 ◽  
Vol 3 (5) ◽  
pp. 597-602 ◽  
Author(s):  
H. A. Darshanee Ruwandeepika ◽  
Patit Paban Bhowmick ◽  
Indrani Karunasagar ◽  
Peter Bossier ◽  
Tom Defoirdt

2020 ◽  
Vol 139 ◽  
pp. 153-160
Author(s):  
S Peeralil ◽  
TC Joseph ◽  
V Murugadas ◽  
PG Akhilnath ◽  
VN Sreejith ◽  
...  

Luminescent Vibrio harveyi is common in sea and estuarine waters. It produces several virulence factors and negatively affects larval penaeid shrimp in hatcheries, resulting in severe economic losses to shrimp aquaculture. Although V. harveyi is an important pathogen of shrimp, its pathogenicity mechanisms have yet to be completely elucidated. In the present study, isolates of V. harveyi were isolated and characterized from diseased Penaeus monodon postlarvae from hatcheries in Kerala, India, from September to December 2016. All 23 tested isolates were positive for lipase, phospholipase, caseinase, gelatinase and chitinase activity, and 3 of the isolates (MFB32, MFB71 and MFB68) showed potential for significant biofilm formation. Based on the presence of virulence genes, the isolates of V. harveyi were grouped into 6 genotypes, predominated by vhpA+ flaB+ ser+ vhh1- luxR+ vopD- vcrD+ vscN-. One isolate from each genotype was randomly selected for in vivo virulence experiments, and the LD50 ranged from 1.7 ± 0.5 × 103 to 4.1 ± 0.1 × 105 CFU ml-1. The expression of genes during the infection in postlarvae was high in 2 of the isolates (MFB12 and MFB32), consistent with the result of the challenge test. However, in MFB19, even though all genes tested were present, their expression level was very low and likely contributed to its lack of virulence. Because of the significant variation in gene expression, the presence of virulence genes alone cannot be used as a marker for pathogenicity of V. harveyi.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 401
Author(s):  
Pauline Nogaret ◽  
Fatima El El Garah ◽  
Anne-Béatrice Blanc-Potard

The opportunistic human pathogen Pseudomonas aeruginosa is responsible for a variety of acute infections and is a major cause of mortality in chronically infected cystic fibrosis patients. Due to increased resistance to antibiotics, new therapeutic strategies against P. aeruginosa are urgently needed. In this context, we aimed to develop a simple vertebrate animal model to rapidly assess in vivo drug efficacy against P. aeruginosa. Zebrafish are increasingly considered for modeling human infections caused by bacterial pathogens, which are commonly microinjected in embryos. In the present study, we established a novel protocol for zebrafish infection by P. aeruginosa based on bath immersion in 96-well plates of tail-injured embryos. The immersion method, followed by a 48-hour survey of embryo viability, was first validated to assess the virulence of P. aeruginosa wild-type PAO1 and a known attenuated mutant. We then validated its relevance for antipseudomonal drug testing by first using a clinically used antibiotic, ciprofloxacin. Secondly, we used a novel quorum sensing (QS) inhibitory molecule, N-(2-pyrimidyl)butanamide (C11), the activity of which had been validated in vitro but not previously tested in any animal model. A significant protective effect of C11 was observed on infected embryos, supporting the ability of C11 to attenuate in vivo P. aeruginosa pathogenicity. In conclusion, we present here a new and reliable method to compare the virulence of P. aeruginosa strains in vivo and to rapidly assess the efficacy of clinically relevant drugs against P. aeruginosa, including new antivirulence compounds.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yorick Janssens ◽  
Nathan Debunne ◽  
Anton De Spiegeleer ◽  
Evelien Wynendaele ◽  
Marta Planas ◽  
...  

AbstractQuorum sensing peptides (QSPs) are bacterial peptides produced by Gram-positive bacteria to communicate with their peers in a cell-density dependent manner. These peptides do not only act as interbacterial communication signals, but can also have effects on the host. Compelling evidence demonstrates the presence of a gut-brain axis and more specifically, the role of the gut microbiota in microglial functioning. The aim of this study is to investigate microglial activating properties of a selected QSP (PapRIV) which is produced by Bacillus cereus species. PapRIV showed in vitro activating properties of BV-2 microglia cells and was able to cross the in vitro Caco-2 cell model and reach the brain. In vivo peptide presence was also demonstrated in mouse plasma. The peptide caused induction of IL-6, TNFα and ROS expression and increased the fraction of ameboid BV-2 microglia cells in an NF-κB dependent manner. Different metabolites were identified in serum, of which the main metabolite still remained active. PapRIV is thus able to cross the gastro-intestinal tract and the blood–brain barrier and shows in vitro activating properties in BV-2 microglia cells, hereby indicating a potential role of this quorum sensing peptide in gut-brain interaction.


2007 ◽  
Vol 26 (4) ◽  
pp. 333-338 ◽  
Author(s):  
Anna Forsby ◽  
Bas Blaauboer

Risk assessment of neurotoxicity is mainly based on in vivo exposure, followed by tests on behaviour, physiology and pathology. In this study, an attempt to estimate lowest observed neurotoxic doses after single or repeated dose exposure was performed. Differentiated human neuroblastoma SH-SY5Y cells were exposed to acrylamide, lindane, parathion, paraoxon, phenytoin, diazepam or caffeine for 72 hours. The effects on protein synthesis and intracellular free Ca2+concentration were studied as physiological endpoints. Voltage operated Ca2 +channel function, acetylcholine receptor function and neurite degenerative effects were investigated as neurospecific endpoints for excitability, cholinergic signal transduction and axonopathy, respectively. The general cytotoxicity, determined as the total cellular protein levels after the 72 hours exposure period, was used for comparison to the specific endpoints and for estimation of acute lethality. The lowest concentration that induced 20% effect (EC 20) obtained for each compound, was used as a surrogate for the lowest neurotoxic level (LOEL) at the target site in vivo. The LOELs were integrated with data on adsorption, distribution, metabolism and excretion of the compounds in physiologically-based biokinetic (PBBK) models of the rat and the lowest observed effective doses (LOEDs) were estimated for the test compounds. A good correlation was observed between the estimated LOEDs and experimental LOEDs found in literature for rat for all test compounds, except for diazepam. However, when using in vitro data from the literature on diazepam's effect on gamma-amino butyric acid (GABA)A receptor function for the estimation of LOED, the correlation between the estimated and experimental LOEDs was improved from a 10 000-fold to a 10-fold difference. Our results indicate that it is possible to estimate LOEDs by integrating in vitro toxicity data as surrogates for lowest observed target tissue levels with PBBK models, provided that some knowledge about toxic mechanisms is known. Human & Experimental Toxicology (2007) 26, 333—338


2004 ◽  
Vol 82 (1) ◽  
pp. 27-44 ◽  
Author(s):  
Norma Marchesini ◽  
Yusuf A Hannun

Ceramide, an emerging bioactive lipid and second messenger, is mainly generated by hydrolysis of sphingomyelin through the action of sphingomyelinases. At least two sphingomyelinases, neutral and acid sphingo myelinases, are activated in response to many extracellular stimuli. Despite extensive studies, the precise cellular function of each of these sphingomyelinases in sphingomyelin turnover and in the regulation of ceramide-mediated responses is not well understood. Therefore, it is essential to elucidate the factors and mechanisms that control the activation of acid and neutral sphingomyelinases to understand their the roles in cell regulation. This review will focus on the molecular mechanisms that regulate these enzymes in vivo and in vitro, especially the roles of oxidants (glu ta thi one, peroxide, nitric oxide), proteins (saposin, caveolin 1, caspases), and lipids (diacylglycerol, arachidonic acid, and ceramide).Key words: sphingomyelinase, ceramide, apoptosis, Niemann-Pick disease, FAN (factor associated with N-SMase activation).


2021 ◽  
Author(s):  
Victoria L. Jeter ◽  
Jorge C. Escalante-Semerena

Posttranslational modifications are mechanisms for rapid control of protein function used by cells from all domains of life. Acetylation of the epsilon amino group ( N ε ) of an active-site lysine of the AMP-forming acetyl-CoA synthetase (Acs) enzyme is the paradigm for the posttranslational control of the activity of metabolic enzymes. In bacteria, the alluded active-site lysine of Acs enzymes can be modified by a number of different GCN5-type N -acetyltransferases (GNATs). Acs activity is lost as a result of acetylation, and restored by deacetylation. Using a heterologous host, we show that Campylobacter jejuni NCTC11168 synthesizes enzymes that control Acs function by reversible lysine acetylation (RLA). This work validates the function of gene products encoded by the cj1537c , cj1715, and cj1050c loci, namely the AMP-forming acetate:CoA ligase ( Cj Acs), a type IV GCN5-type lysine acetyltransferase (GNAT, hereafter Cj LatA), and a NAD + -dependent (class III) sirtuin deacylase ( Cj CobB), respectively. To our knowledge, these are the first in vivo and in vitro data on C. jejuni enzymes that control the activity of Cj Acs. IMPORTANCE This work is important because it provides the experimental evidence needed to support the assignment of function to three key enzymes, two of which control the reversible posttranslational modification of an active-site lysyl residue of the central metabolic enzyme acetyl-CoA synthetase ( Cj Acs). We can now generate Campylobacter jejuni mutant strains defective in these functions, so we can establish the conditions in which this mode of regulation of Cj Acs is triggered in this bacterium. Such knowledge may provide new therapeutic strategies for the control of this pathogen.


2019 ◽  
Vol 5 (3) ◽  
pp. eaav1118 ◽  
Author(s):  
Ming Tang ◽  
Zhiming Li ◽  
Chaohua Zhang ◽  
Xiaopeng Lu ◽  
Bo Tu ◽  
...  

The activation of ataxia-telangiectasia mutated (ATM) upon DNA damage involves a cascade of reactions, including acetylation by TIP60 and autophosphorylation. However, how ATM is progressively deactivated after completing DNA damage repair remains obscure. Here, we report that sirtuin 7 (SIRT7)–mediated deacetylation is essential for dephosphorylation and deactivation of ATM. We show that SIRT7, a class III histone deacetylase, interacts with and deacetylates ATM in vitro and in vivo. In response to DNA damage, SIRT7 is mobilized onto chromatin and deacetylates ATM during the late stages of DNA damage response, when ATM is being gradually deactivated. Deacetylation of ATM by SIRT7 is prerequisite for its dephosphorylation by its phosphatase WIP1. Consequently, depletion of SIRT7 or acetylation-mimic mutation of ATM induces persistent ATM phosphorylation and activation, thus leading to impaired DNA damage repair. Together, our findings reveal a previously unidentified role of SIRT7 in regulating ATM activity and DNA damage repair.


Sign in / Sign up

Export Citation Format

Share Document