scholarly journals Biophysics of object segmentation in a collision-detecting neuron

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Richard Burkett Dewell ◽  
Fabrizio Gabbiani

Collision avoidance is critical for survival, including in humans, and many species possess visual neurons exquisitely sensitive to objects approaching on a collision course. Here, we demonstrate that a collision-detecting neuron can detect the spatial coherence of a simulated impending object, thereby carrying out a computation akin to object segmentation critical for proper escape behavior. At the cellular level, object segmentation relies on a precise selection of the spatiotemporal pattern of synaptic inputs by dendritic membrane potential-activated channels. One channel type linked to dendritic computations in many neural systems, the hyperpolarization-activated cation channel, HCN, plays a central role in this computation. Pharmacological block of HCN channels abolishes the neuron's spatial selectivity and impairs the generation of visually guided escape behaviors, making it directly relevant to survival. Additionally, our results suggest that the interaction of HCN and inactivating K+ channels within active dendrites produces neuronal and behavioral object specificity by discriminating between complex spatiotemporal synaptic activation patterns.

2017 ◽  
Author(s):  
Richard B. Dewell ◽  
Fabrizio Gabbiani

Collision avoidance is critical for survival, including in humans, and many species possess visual neurons exquisitely sensitive to objects approaching on a collision course. The most studied such collision-detecting neuron within the optic lobe of grasshoppers has long served as a model for understanding collision avoidance behaviors and their underlying neural computations. Here, we demonstrate that this neuron detects the spatial coherence of a simulated impending object, thereby carrying out a computation akin to object segmentation critical for proper escape behavior. At the cellular level, object segmentation relies on a precise selection of the spatiotemporal pattern of synaptic inputs by dendritic membrane potential-activated channels. One channel type linked to dendritic computations in many neural systems, the hyperpolarization-activated cation channel, HCN, plays a central role in this computation as its pharmacological block abolishes the neuron's spatial selectivity and impairs the generation of visually guided escape behaviors, making it directly relevant to survival. Our results elucidate how active dendritic channels produce neuronal and behavioral object specificity by discriminating between complex spatiotemporal synaptic activation patterns.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Behrad Noudoost ◽  
Kelsey Lynne Clark ◽  
Tirin Moore

Visually guided behavior relies on the integration of sensory input and information held in working memory (WM). Yet it remains unclear how this is accomplished at the level of neural circuits. We studied the direct visual cortical inputs to neurons within a visuomotor area of prefrontal cortex in behaving monkeys. We show that the efficacy of visual input to prefrontal cortex is gated by information held in WM. Surprisingly, visual input to prefrontal neurons was found to target those with both visual and motor properties, rather than preferentially targeting other visual neurons. Furthermore, activity evoked from visual cortex was larger in magnitude, more synchronous, and more rapid, when monkeys remembered locations that matched the location of visual input. These results indicate that WM directly influences the circuitry that transforms visual input into visually guided behavior.


2017 ◽  
Vol 118 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Kelly R. Bullock ◽  
Florian Pieper ◽  
Adam J. Sachs ◽  
Julio C. Martinez-Trujillo

Common trends observed in many visual and oculomotor-related cortical areas include retinotopically organized receptive and movement fields exhibiting a Gaussian shape and increasing size with eccentricity. These trends are demonstrated in the frontal eye fields, many visual areas, and the superior colliculus but have not been thoroughly characterized in prearcuate area 8Ar of the prefrontal cortex. This is important since area 8Ar, located anterior to the frontal eye fields, is more cytoarchitectonically similar to prefrontal areas than premotor areas. Here we recorded the responses of 166 neurons in area 8Ar of two male macaques while the animals made visually guided saccades to a peripheral sine-wave grating stimulus positioned at 1 of 40 possible locations (8 angles along 5 eccentricities). To characterize the neurons’ receptive and movement fields, we fit a bivariate Gaussian model to the baseline-subtracted average firing rate during stimulus presentation (early and late visual epochs) and before saccade onset (presaccadic epoch). One hundred twenty-one of one hundred sixty-six neurons showed spatially selective visual and presaccadic responses. Of the visually selective neurons, 76% preferred the contralateral visual hemifield, whereas 24% preferred the ipsilateral hemifield. The angular width of visual and movement-related fields scaled positively with increasing eccentricity. Moreover, responses of neurons with visual receptive fields were modulated by target contrast, exhibiting sigmoid tuning curves that resemble those of visual neurons in upstream areas such as MT and V4. Finally, we found that neurons with receptive fields at similar spatial locations were clustered within the area; however, this organization did not appear retinotopic. NEW & NOTEWORTHY We recorded the responses of neurons in lateral prefrontal area 8Ar of macaques during a visually guided saccade task using multielectrode arrays. Neurons have Gaussian-shaped visual and movement fields in both visual hemifields, with a bias toward the contralateral hemifield. Visual neurons show contrast response functions with sigmoid shapes. Visual neurons tend to cluster at similar locations within the cortical surface; however, this organization does not appear retinotopic.


2016 ◽  
Vol 116 (6) ◽  
pp. 2882-2891 ◽  
Author(s):  
Rebecca M. Krock ◽  
Tirin Moore

Primate vision is continuously disrupted by saccadic eye movements, and yet this disruption goes unperceived. One mechanism thought to reduce perception of this self-generated movement is saccadic suppression, a global loss of visual sensitivity just before, during, and after saccadic eye movements. The frontal eye field (FEF) is a candidate source of neural correlates of saccadic suppression previously observed in visual cortex, because it contributes to the generation of visually guided saccades and modulates visual cortical responses. However, whether the FEF exhibits a perisaccadic reduction in visual sensitivity that could be transmitted to visual cortex is unknown. To determine whether the FEF exhibits a signature of saccadic suppression, we recorded the visual responses of FEF neurons to brief, full-field visual probe stimuli presented during fixation and before onset of saccades directed away from the receptive field in rhesus macaques ( Macaca mulatta). We measured visual sensitivity during both epochs and found that it declines before saccade onset. Visual sensitivity was significantly reduced in visual but not visuomotor neurons. This reduced sensitivity was also present in visual neurons with no movement-related modulation during visually guided saccades and thus occurred independently from movement-related activity. Across the population of visual neurons, sensitivity began declining ∼80 ms before saccade onset. We also observed a similar presaccadic reduction in sensitivity to isoluminant, chromatic stimuli. Our results demonstrate that the signaling of visual information by FEF neurons is reduced during saccade preparation, and thus these neurons exhibit a signature of saccadic suppression.


2019 ◽  
Author(s):  
Timothy W. Dunn ◽  
James E. Fitzgerald

Breakthrough technologies for monitoring and manipulating single-neuron activity provide unprecedented opportunities for whole-brain neuroscience in larval zebrafish1–9. Understanding the neural mechanisms of visually guided behavior also requires precise stimulus control, but little prior research has accounted for physical distortions that result from refraction and reflection at an air-water interface that usually separates the projected stimulus from the fish10–12. Here we provide a computational tool that transforms between projected and received stimuli in order to detect and control these distortions. The tool considers the most commonly encountered interface geometry, and we show that this and other common configurations produce stereotyped distortions. By correcting these distortions, we reduced discrepancies in the literature concerning stimuli that evoke escape behavior13,14, and we expect this tool will help reconcile other confusing aspects of the literature. This tool also aids experimental design, and we illustrate the dangers that uncorrected stimuli pose to receptive field mapping experiments.


2017 ◽  
Author(s):  
Ying Zhu ◽  
Richard B. Dewell ◽  
Hongxia Wang ◽  
Fabrizio Gabbiani

SummaryVisual neurons specialized in tracking objects on a collision course are often finely tuned to their target stimuli as this is critical for survival. The presynaptic neural networks converging on these neurons and their role in tuning them remains poorly understood. We took advantage of well-known characteristics of one such neuron to investigate the properties of its presynaptic input network. We find a structure more complex than hitherto realized. In addition to dynamic lateral inhibition used to filter out background motion, presynaptic circuits include normalizing inhibition and short-range lateral excitatory interactions mediated by muscarinic acetylcholine receptors. These interactions preferentially boost responses to coherently expanding visual stimuli generated by colliding objects, as opposed to spatially incoherent controls, helping implement object segmentation. Hence, in addition to active dendritic conductances within collision detecting neurons, multiple layers of both inhibitory and excitatory presynaptic connections are needed to finely tune neural circuits for collision detection.


2020 ◽  
Author(s):  
Behrad Noudoost ◽  
Kelsey L. Clark ◽  
Tirin Moore

AbstractVisually guided behavior relies on the integration of sensory input with information held in working memory. Yet it remains unclear how this is accomplished at the level of neural circuits. We studied the direct visual cortical inputs to neurons within a visuomotor area of prefrontal cortex in behaving monkeys. We show that the synaptic efficacy of visual cortical input to prefrontal cortex is gated by information held in working memory. Surprisingly, visual input to prefrontal neurons was found to target those with both visual and motor properties, rather than preferentially targeting other visual neurons. Furthermore, activity evoked from visual cortex was larger in magnitude, more synchronous, and more rapid, when monkeys remembered locations that matched the location of visual input. These results indicate that working memory directly influences the circuitry that transforms visual input into visually guided behavior.


Author(s):  
D. L. Taylor

Cells function through the complex temporal and spatial interplay of ions, metabolites, macromolecules and macromolecular assemblies. Biochemical approaches allow the investigator to define the components and the solution chemical reactions that might be involved in cellular functions. Static structural methods can yield information concerning the 2- and 3-D organization of known and unknown cellular constituents. Genetic and molecular techniques are powerful approaches that can alter specific functions through the manipulation of gene products and thus identify necessary components and sequences of molecular events. However, full knowledge of the mechanism of particular cell functions will require direct measurement of the interplay of cellular constituents. Therefore, there has been a need to develop methods that can yield chemical and molecular information in time and space in living cells, while allowing the integration of information from biochemical, molecular and genetic approaches at the cellular level.


Author(s):  
E. Völkl ◽  
L.F. Allard ◽  
B. Frost ◽  
T.A. Nolan

Off-axis electron holography has the well known ability to preserve the complex image wave within the final, recorded image. This final image described by I(x,y) = I(r) contains contributions from the image intensity of the elastically scattered electrons IeI (r) = |A(r) exp (iΦ(r)) |, the contributions from the inelastically scattered electrons IineI (r), and the complex image wave Ψ = A(r) exp(iΦ(r)) as:(1) I(r) = IeI (r) + Iinel (r) + μ A(r) cos(2π Δk r + Φ(r))where the constant μ describes the contrast of the interference fringes which are related to the spatial coherence of the electron beam, and Φk is the resulting vector of the difference of the wavefront vectors of the two overlaping beams. Using a software package like HoloWorks, the complex image wave Ψ can be extracted.


Author(s):  
T. M. Weatherby ◽  
P.H. Lenz

Crustaceans, as well as other arthropods, are covered with sensory setae and hairs, including mechanoand chemosensory sensillae with a ciliary origin. Calanoid copepods are small planktonic crustaceans forming a major link in marine food webs. In conjunction with behavioral and physiological studies of the antennae of calanoids, we undertook the ultrastructural characterization of sensory setae on the antennae of Pleuromamma xiphias.Distal mechanoreceptive setae exhibit exceptional behavioral and physiological performance characteristics: high sensitivity (<10 nm displacements), fast reaction times (<1 msec latency) and phase locking to high frequencies (1-2 kHz). Unusual structural features of the mechanoreceptors are likely to be related to their physiological sensitivity. These features include a large number (up to 3000) of microtubules in each sensory cell dendrite, arising from or anchored to electron dense rods associated with the ciliary basal body microtubule doublets. The microtubules are arranged in a regular array, with bridges between and within rows. These bundles of microtubules extend far into each mechanoreceptive seta and terminate in a staggered fashion along the dendritic membrane, contacting a large membrane surface area and providing a large potential site of mechanotransduction.


Sign in / Sign up

Export Citation Format

Share Document