scholarly journals Genetic analysis reveals functions of atypical polyubiquitin chains

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Fernando Meza Gutierrez ◽  
Deniz Simsek ◽  
Arda Mizrak ◽  
Adam Deutschbauer ◽  
Hannes Braberg ◽  
...  

Although polyubiquitin chains linked through all lysines of ubiquitin exist, specific functions are well-established only for lysine-48 and lysine-63 linkages in Saccharomyces cerevisiae. To uncover pathways regulated by distinct linkages, genetic interactions between a gene deletion library and a panel of lysine-to-arginine ubiquitin mutants were systematically identified. The K11R mutant had strong genetic interactions with threonine biosynthetic genes. Consistently, we found that K11R mutants import threonine poorly. The K11R mutant also exhibited a strong genetic interaction with a subunit of the anaphase-promoting complex (APC), suggesting a role in cell cycle regulation. K11-linkages are important for vertebrate APC function, but this was not previously described in yeast. We show that the yeast APC also modifies substrates with K11-linkages in vitro, and that those chains contribute to normal APC-substrate turnover in vivo. This study reveals comprehensive genetic interactomes of polyubiquitin chains and characterizes the role of K11-chains in two biological pathways.

2020 ◽  
Author(s):  
Sierra Rosiana ◽  
Liyang Zhang ◽  
Grace H. Kim ◽  
Alexey V. Revtovich ◽  
Arjun Sukumaran ◽  
...  

AbstractCandida albicans is a microbial fungus that exists as a commensal member of the human microbiome and an opportunistic pathogen. Cell surface-associated adhesin proteins play a crucial role in C. albicans’ ability to undergo cellular morphogenesis, develop robust biofilms, colonize, and cause infection in a host. However, a comprehensive analysis of the role and relationships between these adhesins has not been explored. We previously established a CRISPR-based platform for efficient generation of single- and double-gene deletions in C. albicans, which was used to construct a library of 144 mutants, comprising 12 unique adhesin genes deleted singly, or in every possible combination of double deletions. Here, we exploit this adhesin mutant library to explore the role of adhesin proteins in C. albicans virulence. We perform a comprehensive, high-throughput screen of this library, using Caenorhabditis elegans as a simplified model host system, which identified mutants critical for virulence and significant genetic interactions. We perform follow-up analysis to assess the ability of high- and low-virulence strains to undergo cellular morphogenesis and form biofilms in vitro, as well as to colonize the C. elegans host. We further perform genetic interaction analysis to identify novel significant negative genetic interactions between adhesin mutants, whereby combinatorial perturbation of these genes significantly impairs virulence, more than expected based on virulence of the single mutant constituent strains. Together, this yields important new insight into the role of adhesins, singly and in combinations, in mediating diverse facets of virulence of this critical fungal pathogen.SummaryCandida albicans is a human fungal pathogen and cause of life-threatening systemic infections. Cell surface-associated adhesins play a central role in this pathogen’s ability to establish infection. Here, we provide a comprehensive analysis of adhesin factors, and their role in fungal virulence. Exploiting a high-throughput workflow, we screened an adhesin mutant library using C. elegans as a simple model host, and identified mutants and genetic interactions involved in virulence. We found that adhesin mutants are impaired in in vitro pathogenicity, irrespective of their virulence. Together, this work provides new insight into the role of adhesin factors in mediating fungal virulence.


2020 ◽  
Vol 117 (7) ◽  
pp. 3543-3550 ◽  
Author(s):  
Yan Huang ◽  
Lu Sun ◽  
Leonidas Pierrakeas ◽  
Linchang Dai ◽  
Lu Pan ◽  
...  

The SWR complex edits the histone composition of nucleosomes at promoters to facilitate transcription by replacing the two nucleosomal H2A-H2B (A-B) dimers with H2A.Z-H2B (Z-B) dimers. Swc5, a subunit of SWR, binds to A-B dimers, but its role in the histone replacement reaction was unclear. In this study, we showed that Swc5 uses a tandem DEF/Y motif within an intrinsically disordered region to engage the A-B dimer. A 2.37-Å X-ray crystal structure of the histone binding domain of Swc5 in complex with an A-B dimer showed that consecutive acidic residues and flanking hydrophobic residues of Swc5 form a cap over the histones, excluding histone–DNA interaction. Mutations in Swc5 DEF/Y inhibited the nucleosome editing function of SWR in vitro. Swc5 DEF/Y interacts with histones in vivo, and the extent of this interaction is dependent on the remodeling ATPase of SWR, supporting a model in which Swc5 acts as a wedge to promote A-B dimer eviction. Given that DEF/Y motifs are found in other evolutionary unrelated chromatin regulators, this work provides the molecular basis for a general strategy used repeatedly during eukaryotic evolution to mobilize histones in various genomic functions.


Genetics ◽  
2021 ◽  
Vol 217 (2) ◽  
Author(s):  
Sierra Rosiana ◽  
Liyang Zhang ◽  
Grace H Kim ◽  
Alexey V Revtovich ◽  
Deeva Uthayakumar ◽  
...  

AbstractCandida albicans is a microbial fungus that exists as a commensal member of the human microbiome and an opportunistic pathogen. Cell surface-associated adhesin proteins play a crucial role in C. albicans’ ability to undergo cellular morphogenesis, develop robust biofilms, colonize, and cause infection in a host. However, a comprehensive analysis of the role and relationships between these adhesins has not been explored. We previously established a CRISPR-based platform for efficient generation of single- and double-gene deletions in C. albicans, which was used to construct a library of 144 mutants, comprising 12 unique adhesin genes deleted singly, and every possible combination of double deletions. Here, we exploit this adhesin mutant library to explore the role of adhesin proteins in C. albicans virulence. We perform a comprehensive, high-throughput screen of this library, using Caenorhabditis elegans as a simplified model host system, which identified mutants critical for virulence and significant genetic interactions. We perform follow-up analysis to assess the ability of high- and low-virulence strains to undergo cellular morphogenesis and form biofilms in vitro, as well as to colonize the C. elegans host. We further perform genetic interaction analysis to identify novel significant negative genetic interactions between adhesin mutants, whereby combinatorial perturbation of these genes significantly impairs virulence, more than expected based on virulence of the single mutant constituent strains. Together, this study yields important new insight into the role of adhesins, singly and in combinations, in mediating diverse facets of virulence of this critical fungal pathogen.


2020 ◽  
Author(s):  
Nobuhiro Tanno ◽  
Shinji Kuninaka ◽  
Sayoko Fujimura ◽  
Kaho Okamura ◽  
Kazumasa Takemoto ◽  
...  

SummaryCDH1/FZR is an activator of Anaphase promoting complex/Cyclosome (APC/C), best known for its role as E3 ubiquitin ligase that drives the cell cycle. APC/C activity is regulated by CDK-mediated phosphorylation of CDH1 during mitotic cell cycle. Although the critical role of CDH1 phosphorylation has been shown mainly in yeast and in vitro cell culture studies, its biological significance in mammalian tissues in vivo remained elusive. Here, we examined the in vivo role of CDH1 phosphorylation using a mouse model, in which non-phosphorylatable substitutions were introduced in the putative CDK-phosphorylation sites of CDH1. Although ablation of CDH1 phosphorylation did not show substantial consequences in mouse somatic tissues, it led to severe testicular defects resulting in male infertility. In the absence of CDH1 phosphorylation, male juvenile germ cells entered meiosis normally but skipped meiosis II producing diploid spermatid-like cells. In aged testis, male germ cells were overall abolished, showing Sertoli cell-only phenotype. The present study demonstrated that phosphorylation of CDH1 is required for temporal regulation of APC/C activity at the transition from meiosis I to meiosis II, and for spermatoginial stem cell maintenance, which raised an insight into the sexual dimorphism of CDH1-regulation in germ cells.


2021 ◽  
Vol 1 (3) ◽  
pp. 178-193
Author(s):  
Yang Gao ◽  
Elena B. Kabotyanski ◽  
Jonathan H. Shepherd ◽  
Elizabeth Villegas ◽  
Deanna Acosta ◽  
...  

Polo-like kinase (PLK) family members play important roles in cell-cycle regulation. The founding member PLK1 is oncogenic and preclinically validated as a cancer therapeutic target. Paradoxically, frequent loss of chromosome 5q11–35, which includes PLK2, is observed in basal-like breast cancer. In this study, we found that PLK2 was tumor suppressive in breast cancer, preferentially in basal-like and triple-negative breast cancer (TNBC) subtypes. Knockdown of PLK1 rescued phenotypes induced by PLK2 loss both in vitro and in vivo. We also demonstrated that PLK2 directly interacted with PLK1 at prometaphase through the kinase but not the polo-box domains of PLK2, suggesting PLK2 functioned at least partially through the interaction with PLK1. Furthermore, an improved treatment response was seen in both Plk2-deleted/low mouse preclinical and patient-derived xenograft (PDX) TNBC models using the PLK1 inhibitor volasertib alone or in combination with carboplatin. Reexpression of PLK2 in an inducible PLK2-null mouse model reduced the therapeutic efficacy of volasertib. In summary, this study delineates the effects of chromosome 5q loss in TNBC that includes PLK2, the relationship between PLK2 and PLK1, and how this may render PLK2-deleted/low tumors more sensitive to PLK1 inhibition in combination with chemotherapy. Significance: The tumor-suppressive role of PLK2, and its relationship with oncogene PLK1, provide a mechanistic rationalization to use PLK1 inhibitors in combination with chemotherapy to treat PLK2-low/deleted tumors. TNBC, and other cancers with low PLK2 expression, are such candidates to leverage precision medicine to identify patients who might benefit from treatment with these inhibitors.


2006 ◽  
Vol 281 (43) ◽  
pp. 32284-32293 ◽  
Author(s):  
Hyun-Joo Yoon ◽  
Anna Feoktistova ◽  
Jun-Song Chen ◽  
Jennifer L. Jennings ◽  
Andrew J. Link ◽  
...  

The anaphase-promoting complex/cyclosome (APC/C) is a conserved multisubunit ubiquitin ligase required for the degradation of key cell cycle regulators. The APC/C becomes active at the metaphase/anaphase transition and remains active during G1 phase. One mechanism linked to activation of the APC/C is phosphorylation. Although many sites of mitotic phosphorylation have been identified in core components of the APC/C, the consequence of any individual phosphorylation event has not been elucidated in vivo. In this study, we show that Hcn1 is an essential core component of the fission yeast APC/C and is critical for maintaining complex integrity. Moreover, Hcn1 is a phosphoprotein in vivo. Phosphorylation of Hcn1 occurs at a single Cdk1 site in vitro and in vivo. Mutation of this site to alanine, but not aspartic acid, compromises APC/C function and leads to a specific defect in the completion of cell division.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
HM Lee ◽  
TG Ahn ◽  
CW Kim ◽  
HJ An
Keyword(s):  

1987 ◽  
Vol 26 (01) ◽  
pp. 1-6 ◽  
Author(s):  
S. Selvaraj ◽  
M. R. Suresh ◽  
G. McLean ◽  
D. Willans ◽  
C. Turner ◽  
...  

The role of glycoconjugates in tumor cell differentiation has been well documented. We have examined the expression of the two anomers of the Thomsen-Friedenreich antigen on the surface of human, canine and murine tumor cell membranes both in vitro and in vivo. This has been accomplished through the synthesis of the disaccharide terminal residues in both a and ß configuration. Both entities were used to generate murine monoclonal antibodies which recognized the carbohydrate determinants. The determination of fine specificities of these antibodies was effected by means of cellular uptake, immunohistopathology and immunoscintigraphy. Examination of pathological specimens of human and canine tumor tissue indicated that the expressed antigen was in the β configuration. More than 89% of all human carcinomas tested expressed the antigen in the above anomeric form. The combination of synthetic antigens and monoclonal antibodies raised specifically against them provide us with invaluable tools for the study of tumor marker expression in humans and their respective animal tumor models.


Sign in / Sign up

Export Citation Format

Share Document