scholarly journals NHR-14 loss of function couples intestinal iron uptake with innate immunity in C. elegans through PQM-1 signaling

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Malini Rajan ◽  
Cole P Anderson ◽  
Paul M Rindler ◽  
Steven Joshua Romney ◽  
Maria C Ferreira dos Santos ◽  
...  

Iron is essential for survival of most organisms. All organisms have thus developed mechanisms to sense, acquire and sequester iron. In C. elegans, iron uptake and sequestration are regulated by HIF-1. We previously showed that hif-1 mutants are developmentally delayed when grown under iron limitation. Here we identify nhr-14, encoding a nuclear receptor, in a screen conducted for mutations that rescue the developmental delay of hif-1 mutants under iron limitation. nhr-14 loss upregulates the intestinal metal transporter SMF-3 to increase iron uptake in hif-1 mutants. nhr-14 mutants display increased expression of innate immune genes and DAF-16/FoxO-Class II genes, and enhanced resistance to Pseudomonas aeruginosa. These responses are dependent on the transcription factor PQM-1, which localizes to intestinal cell nuclei in nhr-14 mutants. Our data reveal how C. elegans utilizes nuclear receptors to regulate innate immunity and iron availability, and show iron sequestration as a component of the innate immune response.

2021 ◽  
Author(s):  
Phillip Wibisono ◽  
Shawndra Wibisono ◽  
Jan Watteyne ◽  
Chia-Hui Chen ◽  
Durai Sellegounder ◽  
...  

A key question in current immunology is how the innate immune system generates high levels of specificity. Like most invertebrates, Caenorhabditis elegans does not have an adaptive immune system and relies solely on innate immunity to defend itself against pathogen attacks, yet it can still differentiate different pathogens and launch distinct innate immune responses. Here, we have found that functional loss of NMUR-1, a neuronal GPCR homologous to mammalian receptors for the neuropeptide neuromedin U, has diverse effects on C. elegans survival against various bacterial pathogens. Transcriptomic analyses and functional assays revealed that NMUR-1 modulates C. elegans transcription activity by regulating the expression of transcription factors, which, in turn, controls the expression of distinct immune genes in response to different pathogens. Our study has uncovered a molecular basis for the specificity of C. elegans innate immunity that could provide mechanistic insights into understanding the specificity of vertebrate innate immunity.


2019 ◽  
Author(s):  
Malini Rajan ◽  
Cole P Anderson ◽  
Paul M Rindler ◽  
Steven Joshua Romney ◽  
Maria C Ferreira dos Santos ◽  
...  

2021 ◽  
Author(s):  
Jianzhi Zhao ◽  
Hongying Fu ◽  
Hengda Zhou ◽  
Xuecong Ren ◽  
Yuanyuan Wang ◽  
...  

Tissue damage elicits a rapid innate immune response that is essential for efficient wound healing and survival of metazoans. It is well known that p38 MAPK kinase, TGF-β, and hemidesmosome signaling pathways have been involved in wounding-induced innate immunity in C. elegans. Here, we find that loss of function of ATFS-1 increased innate immune response while an elevated level of mitochondrial unfolded protein response (mitoUPR) inhibits the innate immune response upon epidermal wounding. Epidermal wounding triggers the nucleus export of ATFS-1 and inhibits themitoUPR in C. elegans epidermis. Moreover, genetic analysis suggests that ATFS-1 functions upstream of the p38 MAP kinase, TGF-β, and DAF-16 signaling pathways in regulating AMPs induction. Thus, our results suggest that the mitoUPR function as an intracellular signal required to fine-tune innate immune response after tissue damage.


2017 ◽  
Author(s):  
Song-Hua Lee ◽  
Shizue Omi ◽  
Nishant Thakur ◽  
Clara Taffoni ◽  
Jérôme Belougne ◽  
...  

ABSTRACTWhen an animal is infected, its innate immune response needs to be tightly regulated across tissues and coordinated with other aspects of organismal physiology. Previous studies with Caenorhabditis elegans have demonstrated that insulin-like peptide genes are differentially expressed in response to different pathogens. They represent prime candidates for conveying signals between tissues upon infection. Here, we focused on one such gene, ins-11 and its potential role in mediating cross-tissue regulation of innate immune genes. While diverse bacterial intestinal infections can trigger the up-regulation of ins-11 in the intestine, we show that epidermal infection with the fungus Drechmeria coniospora triggers an upregulation of ins-11 in the epidermis. Using the Shigella virulence factor OpsF, a MAP kinase inhibitor, we found that in both cases, ins-11 expression is controlled cell autonomously by p38 MAPK, but via distinct transcription factors, STA-2/STAT in the epidermis and HLH-30/TFEB in the intestine. We established that ins-11, and the insulin signaling pathway more generally, are not involved in the regulation of antimicrobial peptide gene expression in the epidermis. The up-regulation of ins-11 in the epidermis does, however, affect intestinal gene expression in a complex manner, and has a deleterious effect on longevity. These results support a model in which insulin signaling, via ins-11, contributes to the coordination of the organismal response to infection, influencing the allocation of resources in an infected animal.


2015 ◽  
Vol 470 (1) ◽  
pp. 145-154 ◽  
Author(s):  
Hsiang Yu ◽  
Huey-Jen Lai ◽  
Tai-Wei Lin ◽  
Chang-Shi Chen ◽  
Szecheng J. Lo

This study uncovered NUC-1 and CRN-7 function in germline apoptosis. Mutations of nuc-1 and crn-7 led to elevated expression of five innate-immunity-related genes and demonstrated that DNase II activity is associated with an innate immune response in C. elegans.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Marian Chuang ◽  
Tiffany I Hsiao ◽  
Amy Tong ◽  
Suhong Xu ◽  
Andrew D Chisholm

Epidermal barrier epithelia form a first line of defense against the environment, protecting animals against infection and repairing physical damage. In C. elegans, death-associated protein kinase (DAPK-1) regulates epidermal morphogenesis, innate immunity and wound repair. Combining genetic suppressor screens and pharmacological tests, we find that DAPK-1 maintains epidermal tissue integrity through regulation of the microtubule (MT) cytoskeleton. dapk-1 epidermal phenotypes are suppressed by treatment with microtubule-destabilizing drugs and mimicked or enhanced by microtubule-stabilizing drugs. Loss of function in ptrn-1, the C. elegans member of the Patronin/Nezha/CAMSAP family of MT minus-end binding proteins, suppresses dapk-1 epidermal and innate immunity phenotypes. Over-expression of the MT-binding CKK domain of PTRN-1 triggers epidermal and immunity defects resembling those of dapk-1 mutants, and PTRN-1 localization is regulated by DAPK-1. DAPK-1 and PTRN-1 physically interact in co-immunoprecipitation experiments, and DAPK-1 itself undergoes MT-dependent transport. Our results uncover an unexpected interdependence of DAPK-1 and the microtubule cytoskeleton in maintenance of epidermal integrity.


2017 ◽  
Vol 23 (8) ◽  
pp. 656-666 ◽  
Author(s):  
Yi Xiao ◽  
Fang Liu ◽  
Pei-ji Zhao ◽  
Cheng-Gang Zou ◽  
Ke-Qin Zhang

The genetically tractable organism Caenorhabditis elegans is a powerful model animal for the study of host innate immunity. Although the intestine and the epidermis of C. elegans that is in contact with pathogens are likely to function as sites for the immune function, recent studies indicate that the nervous system could control innate immunity in C. elegans. In this report, we demonstrated that protein kinase A (PKA)/KIN-1 in the neurons contributes to resistance against Salmonella enterica infection in C. elegans. Microarray analysis revealed that PKA/KIN-1 regulates the expression of a set of antimicrobial effectors in the non-neuron tissues, which are required for innate immune responses to S. enterica. Furthermore, PKA/KIN-1 regulated the expression of lysosomal genes during S. enterica infection. Our results suggest that the lysosomal signaling molecules are involved in autophagy by controlling autophagic flux, rather than formation of autophagosomes. As autophagy is crucial for host defense against S. enterica infection in a metazoan, the lysosomal pathway also acts as a downstream effector of the PKA/KIN-1 signaling for innate immunity. Our data indicate that the PKA pathway contributes to innate immunity in C. elegans by signaling from the nervous system to periphery tissues to protect the host against pathogens.


Author(s):  
Aixiao Luo ◽  
Huiru Jing ◽  
Lei Yuan ◽  
Yanzhe Wang ◽  
Hui Xiao ◽  
...  

Scavenger receptors play a critical role in innate immunity by acting as the pattern-recognition receptors. There are six class B scavenger receptors homologs in C. elegans. However, it remains unclear whether they are required for host defense against bacterial pathogens. Here, we show that, of the six SCAV proteins, only loss of function scav-5 protect C. elegans against pathogenic bacteria S. typhimurium SL1344 and P. aeruginosa PA14 by different mechanism. scav-5 mutants are resistant to S. typhimurium SL1344 due to dietary restriction. While scav-5 acts upstream of or in parallel to tir-1 in conserved PMK-1 p38 MAPK pathway to upregulate the innate immune response to defend worms against P. aeruginosa PA14. This is the first demonstration of a role for SCAV-5 in host defense against pathogenic bacteria. Our results provide an important basis for further elucidating the underlying molecular mechanism by which scav-5 regulates innate immune responses.


2005 ◽  
Vol 16 (7) ◽  
pp. 3247-3259 ◽  
Author(s):  
A. J. MacQueen ◽  
J. J. Baggett ◽  
N. Perumov ◽  
R. A. Bauer ◽  
T. Januszewski ◽  
...  

Investigation of Caenorhabditis elegans act-5 gene function revealed that intestinal microvillus formation requires a specific actin isoform. ACT-5 is the most diverged of the five C. elegans actins, sharing only 93% identity with the other four. Green fluorescent protein reporter and immunofluorescence analysis indicated that act-5 gene expression is limited to microvillus-containing cells within the intestine and excretory systems and that ACT-5 is apically localized within intestinal cells. Animals heterozygous for a dominant act-5 mutation looked clear and thin and grew slowly. Animals homozygous for either the dominant act-5 mutation, or a recessive loss of function mutant, exhibited normal morphology and intestinal cell polarity, but died during the first larval stage. Ultrastructural analysis revealed a complete loss of intestinal microvilli in homozygous act-5 mutants. Forced expression of ACT-1 under the control of the act-5 promoter did not rescue the lethality of the act-5 mutant. Together with immuno-electron microscopy experiments that indicated ACT-5 is enriched within microvilli themselves, these results suggest a microvillus-specific function for act-5, and further, they raise the possibility that specific actins may be specialized for building microvilli and related structures.


Sign in / Sign up

Export Citation Format

Share Document