scholarly journals An mRNA-binding channel in the ES6S region of the translation 48S-PIC promotes RNA unwinding and scanning

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Irene Díaz-López ◽  
René Toribio ◽  
Juan José Berlanga ◽  
Iván Ventoso

Loading of mRNA onto the ribosomal 43S pre-initiation complex (PIC) and its subsequent scanning require the removal of the secondary structure of the by RNA helicases such as eIF4A. However, the topology and mechanics of the scanning complex bound to mRNA (48S-PIC) and the influence of its solvent-side composition on the scanning process are poorly known. Here, we found that the ES6S region of the 48S-PIC constitutes an extended binding channel for eIF4A-mediated unwinding of mRNA and scanning. Blocking ES6S inhibited the cap-dependent translation of mRNAs that have structured 5′ UTRs (including G-quadruplexes), many of which are involved in signal transduction and growth, but it did not affect IRES-driven translation. Genome-wide analysis of mRNA translation revealed a great diversity in ES6S-mediated scanning dependency. Our data suggest that mRNA threading into the ES6S region makes scanning by 48S PIC slower but more processive. Hence, we propose a topological and functional model of the scanning 48S-PIC.

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Shulin Zhang ◽  
Zailong Tian ◽  
Haipeng Li ◽  
Yutao Guo ◽  
Yanqi Zhang ◽  
...  

Abstract Background F-box proteins are substrate-recognition components of the Skp1-Rbx1-Cul1-F-box protein (SCF) ubiquitin ligases. By selectively targeting the key regulatory proteins or enzymes for ubiquitination and 26S proteasome mediated degradation, F-box proteins play diverse roles in plant growth/development and in the responses of plants to both environmental and endogenous signals. Studies of F-box proteins from the model plant Arabidopsis and from many additional plant species have demonstrated that they belong to a super gene family, and function across almost all aspects of the plant life cycle. However, systematic exploration of F-box family genes in the important fiber crop cotton (Gossypium hirsutum) has not been previously performed. The genome-wide analysis of the cotton F-box gene family is now possible thanks to the completion of several cotton genome sequencing projects. Results In current study, we first conducted a genome-wide investigation of cotton F-box family genes by reference to the published F-box protein sequences from other plant species. 592 F-box protein encoding genes were identified in the Gossypium hirsutume acc.TM-1 genome and, subsequently, we were able to present their gene structures, chromosomal locations, syntenic relationships with their parent species. In addition, duplication modes analysis showed that cotton F-box genes were distributed to 26 chromosomes, with the maximum number of genes being detected on chromosome 5. Although the WGD (whole-genome duplication) mode seems play a dominant role during cotton F-box gene expansion process, other duplication modes including TD (tandem duplication), PD (proximal duplication), and TRD (transposed duplication) also contribute significantly to the evolutionary expansion of cotton F-box genes. Collectively, these bioinformatic analysis suggest possible evolutionary forces underlying F-box gene diversification. Additionally, we also conducted analyses of gene ontology, and expression profiles in silico, allowing identification of F-box gene members potentially involved in hormone signal transduction. Conclusion The results of this study provide first insights into the Gossypium hirsutum F-box gene family, which lays the foundation for future studies of functionality, particularly those involving F-box protein family members that play a role in hormone signal transduction.


2019 ◽  
Author(s):  
Xuan G. Luong ◽  
Enrico Maria Daldello ◽  
Gabriel Rajkovic ◽  
Cai-Rong Yang ◽  
Marco Conti

SummaryDuring oocyte maturation, changes in gene expression depend exclusively on translation and degradation of maternal mRNAs rather than transcription. Execution of this translation program is essential for assembling the molecular machinery required for meiotic progression, fertilization, and embryo development. With the present study, we used a RiboTag/RNA-Seq approach to explore the timing of maternal mRNA translation in quiescent oocytes as well as in oocytes progressing through the first meiotic division. This genome-wide analysis reveals a global switch in maternal mRNA translation coinciding with oocyte re-entry into the meiotic cell cycle. Messenger RNAs whose translation is highly active in quiescent oocytes invariably become repressed during meiotic re-entry, whereas transcripts repressed in quiescent oocytes become activated. Experimentally, we have defined the exact timing of the switch, the repressive function of CPE elements, and identified a novel role for CPEB1 in maintaining constitutive translation of a large group of maternal mRNAs during maturation.


2012 ◽  
Vol 87 (Suppl_1) ◽  
pp. 88-88 ◽  
Author(s):  
Marco Conti ◽  
Jing Chen ◽  
Fang Xie ◽  
Chi-Jen Lin ◽  
Kathleen Horner

2016 ◽  
Vol 198 (15) ◽  
pp. 2089-2099 ◽  
Author(s):  
Albert Remus R. Rosana ◽  
Denise S. Whitford ◽  
Richard P. Fahlman ◽  
George W. Owttrim

ABSTRACTThe cyanobacteriumSynechocystissp. strain PCC 6803 encodes a single DEAD box RNA helicase, CrhR, whose expression is tightly autoregulated in response to cold stress. Subcellular localization and proteomic analysis results indicate that CrhR localizes to both the cytoplasmic and thylakoid membrane regions and cosediments with polysome and RNA degradosome components. Evidence is presented that either functional RNA helicase activity or a C-terminal localization signal was required for polysome but not thylakoid membrane localization. Polysome fractionation and runoff translation analysis results indicate that CrhR associates with actively translating polysomes. The data implicate a role for CrhR in translation or RNA degradation in the thylakoid region related to thylakoid biogenesis or stability, a role that is enhanced at low temperature. Furthermore, CrhR cosedimentation with polysome and RNA degradosome complexes links alteration of RNA secondary structure with a potential translation-RNA degradation complex inSynechocystis.IMPORTANCEThe interaction between mRNA translation and degradation is a major determinant controlling gene expression. Regulation of RNA function by alteration of secondary structure by RNA helicases performs crucial roles, not only in both of these processes but also in all aspects of RNA metabolism. Here, we provide evidence that the cyanobacterial RNA helicase CrhR localizes to both the cytoplasmic and thylakoid membrane regions and cosediments with actively translating polysomes and RNA degradosome components. These findings link RNA helicase alteration of RNA secondary structure with translation and RNA degradation in prokaryotic systems and contribute to the data supporting the idea of the existence of a macromolecular machine catalyzing these reactions in prokaryotic systems, an association hitherto recognized only in archaea and eukarya.


2020 ◽  
Vol 48 (6) ◽  
pp. 3257-3276 ◽  
Author(s):  
Xuan G Luong ◽  
Enrico Maria Daldello ◽  
Gabriel Rajkovic ◽  
Cai-Rong Yang ◽  
Marco Conti

Abstract During oocyte maturation, changes in gene expression depend exclusively on translation and degradation of maternal mRNAs rather than transcription. Execution of this translation program is essential for assembling the molecular machinery required for meiotic progression, fertilization, and embryo development. With the present study, we used a RiboTag/RNA-Seq approach to explore the timing of maternal mRNA translation in quiescent oocytes as well as in oocytes progressing through the first meiotic division. This genome-wide analysis reveals a global switch in maternal mRNA translation coinciding with oocyte re-entry into the meiotic cell cycle. Messenger RNAs whose translation is highly active in quiescent oocytes invariably become repressed during meiotic re-entry, whereas transcripts repressed in quiescent oocytes become activated. Experimentally, we have defined the exact timing of the switch and the repressive function of CPE elements, and identified a novel role for CPEB1 in maintaining constitutive translation of a large group of maternal mRNAs during maturation.


2015 ◽  
Vol 25 (8) ◽  
pp. 1196-1205 ◽  
Author(s):  
Neelam Dabas Sen ◽  
Fujun Zhou ◽  
Nicholas T. Ingolia ◽  
Alan G. Hinnebusch

2013 ◽  
Vol 87 (12) ◽  
pp. 6668-6677 ◽  
Author(s):  
H. Colman ◽  
C. Le Berre-Scoul ◽  
C. Hernandez ◽  
S. Pierredon ◽  
A. Bihouee ◽  
...  

2003 ◽  
Vol 100 (7) ◽  
pp. 3889-3894 ◽  
Author(s):  
Y. Arava ◽  
Y. Wang ◽  
J. D. Storey ◽  
C. L. Liu ◽  
P. O. Brown ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document