scholarly journals Genome-wide analysis and characterization of F-box gene family in Gossypium hirsutum L

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Shulin Zhang ◽  
Zailong Tian ◽  
Haipeng Li ◽  
Yutao Guo ◽  
Yanqi Zhang ◽  
...  

Abstract Background F-box proteins are substrate-recognition components of the Skp1-Rbx1-Cul1-F-box protein (SCF) ubiquitin ligases. By selectively targeting the key regulatory proteins or enzymes for ubiquitination and 26S proteasome mediated degradation, F-box proteins play diverse roles in plant growth/development and in the responses of plants to both environmental and endogenous signals. Studies of F-box proteins from the model plant Arabidopsis and from many additional plant species have demonstrated that they belong to a super gene family, and function across almost all aspects of the plant life cycle. However, systematic exploration of F-box family genes in the important fiber crop cotton (Gossypium hirsutum) has not been previously performed. The genome-wide analysis of the cotton F-box gene family is now possible thanks to the completion of several cotton genome sequencing projects. Results In current study, we first conducted a genome-wide investigation of cotton F-box family genes by reference to the published F-box protein sequences from other plant species. 592 F-box protein encoding genes were identified in the Gossypium hirsutume acc.TM-1 genome and, subsequently, we were able to present their gene structures, chromosomal locations, syntenic relationships with their parent species. In addition, duplication modes analysis showed that cotton F-box genes were distributed to 26 chromosomes, with the maximum number of genes being detected on chromosome 5. Although the WGD (whole-genome duplication) mode seems play a dominant role during cotton F-box gene expansion process, other duplication modes including TD (tandem duplication), PD (proximal duplication), and TRD (transposed duplication) also contribute significantly to the evolutionary expansion of cotton F-box genes. Collectively, these bioinformatic analysis suggest possible evolutionary forces underlying F-box gene diversification. Additionally, we also conducted analyses of gene ontology, and expression profiles in silico, allowing identification of F-box gene members potentially involved in hormone signal transduction. Conclusion The results of this study provide first insights into the Gossypium hirsutum F-box gene family, which lays the foundation for future studies of functionality, particularly those involving F-box protein family members that play a role in hormone signal transduction.

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yuzhu Huo ◽  
Wangdan Xiong ◽  
Kunlong Su ◽  
Yu Li ◽  
Yawen Yang ◽  
...  

The plant-specific transcription factor TCPs play multiple roles in plant growth, development, and stress responses. However, a genome-wide analysis of TCP proteins and their roles in salt stress has not been declared in switchgrass (Panicum virgatum L.). In this study, 42 PvTCP genes (PvTCPs) were identified from the switchgrass genome and 38 members can be anchored to its chromosomes unevenly. Nine PvTCPs were predicted to be microRNA319 (miR319) targets. Furthermore, PvTCPs can be divided into three clades according to the phylogeny and conserved domains. Members in the same clade have the similar gene structure and motif localization. Although all PvTCPs were expressed in tested tissues, their expression profiles were different under normal condition. The specific expression may indicate their different roles in plant growth and development. In addition, approximately 20 cis-acting elements were detected in the promoters of PvTCPs, and 40% were related to stress response. Moreover, the expression profiles of PvTCPs under salt stress were also analyzed and 29 PvTCPs were regulated after NaCl treatment. Taken together, the PvTCP gene family was analyzed at a genome-wide level and their possible functions in salt stress, which lay the basis for further functional analysis of PvTCPs in switchgrass.


BMC Genomics ◽  
2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Xihua Li ◽  
Guoyuan Liu ◽  
Yanhui Geng ◽  
Man Wu ◽  
Wenfeng Pei ◽  
...  

2013 ◽  
Vol 12 (2) ◽  
pp. 2038-2055 ◽  
Author(s):  
H.W. Yan ◽  
L. Hong ◽  
Y.Q. Zhou ◽  
H.Y. Jiang ◽  
S.W. Zhu ◽  
...  

2019 ◽  
Vol 20 (20) ◽  
pp. 5094
Author(s):  
Cao ◽  
Liu ◽  
Guo ◽  
Chen ◽  
Li ◽  
...  

The Dynamin gene family play a significance role in many physiological processes, especially ARC5 (Accumulation and replication of chloroplasts 5) in the process of plastid division. We performed a genome-wide analysis of the cassava Dynamin family based on the published cassava genome sequence and identified ARC5. 23 cassava Dynamins (MeDynamins) were identified and renamed. 23 MeDynamins were further divided into five major groups based on their structural and phylogenetic characteristics. The segmental duplication events have a significant impact on the expansion of MeDynamins. ARC5 expression analysis showed that there were differences between leaves and roots of cassava at different developmental stages. The tissue-specific expression analysis of the MeDynamins showed that most of MeDynamins were expressed in stem apical meristem and embryogenesis, whereas ARC5 was mainly expressed in leaves. The processing of IAA (Indole-3-acetic Acid) and MeJA (Methyl Jasmonate) verified the prediction results of cis-elements, and ACR5 was closely related to plant growth and positively correlated. It also indicated that high concentrations of MeJA treatment caused the cassava defense mechanism to function in advance. In conclusion, these findings provide basic insights for functional validation of the ARC5 genes in exogenous hormonal treatments.


2018 ◽  
Vol 19 (9) ◽  
pp. 2478 ◽  
Author(s):  
Qinglong Dong ◽  
Dingyue Duan ◽  
Shuang Zhao ◽  
Bingyao Xu ◽  
Jiawei Luo ◽  
...  

Stress-associated proteins (SAPs) are novel A20/AN1 zinc finger domain-containing proteins that are now favorable targets to improve abiotic stress tolerance in plants. However, the SAP gene family and their biological functions have not been identified in the important fruit crop apple (Malus × domestica Borkh.). We conducted a genome-wide analysis and cloning of this gene family in apple and determined that the overexpression of MdSAP15 enhances drought tolerance in Arabidopsis plants. We identified 30 SAP genes in the apple genome. Phylogenetic analysis revealed two major groups within that family. Results from sequence alignments and analyses of 3D structures, phylogenetics, genomics structure, and conserved domains indicated that apple SAPs are highly and structurally conserved. Comprehensive qRT-PCR analysis found various expression patterns for MdSAPs in different tissues and in response to a water deficit. A transgenic analysis showed that the overexpression of MdSAP15 in transgenic Arabidopsis plants markedly enhanced their tolerance to osmotic and drought stresses. Our results demonstrate that the SAP genes are highly conserved in plant species, and that MdSAP15 can be used as a target gene in genetic engineering approaches to improve drought tolerance.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Xinshan Zang ◽  
Xiaoli Geng ◽  
Lei Ma ◽  
Nuohan Wang ◽  
Wenfeng Pei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document