scholarly journals Inhibition of post-termination ribosome recycling at premature termination codons in UPF1 ATPase mutants

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Lucas D Serdar ◽  
DaJuan L Whiteside ◽  
Sarah L Nock ◽  
David McGrath ◽  
Kristian E Baker

Recognition and rapid degradation of mRNA harboring premature translation termination codons (PTCs) serves to protect cells from accumulating non-functional and potentially toxic truncated polypeptides. Targeting of PTC-containing transcripts is mediated by the nonsense-mediated mRNA decay (NMD) pathway and requires a conserved set of proteins including UPF1, an RNA helicase whose ATPase activity is essential for NMD. Previously, we identified a functional interaction between the NMD machinery and terminating ribosomes based on 3’ RNA decay fragments that accrue in UPF1 ATPase mutants. Herein, we show that those decay intermediates originate downstream of the PTC and harbor 80S ribosomes that migrate into the mRNA 3’ UTR independent of canonical translation. Accumulation of 3’ RNA decay fragments is determined by both RNA sequence downstream of the PTC and the inactivating mutation within the active site of UPF1. Our data reveal a failure in post-termination ribosome recycling in UPF1 ATPase mutants.

2010 ◽  
Vol 38 (6) ◽  
pp. 1615-1620 ◽  
Author(s):  
Pamela Nicholson ◽  
Oliver Mühlemann

In eukaryotes, mRNAs harbouring PTCs (premature translation-termination codons) are recognized and eliminated by NMD (nonsense-mediated mRNA decay). In addition to its quality-control function, NMD constitutes a translation-dependent post-transcriptional pathway to regulate the expression levels of physiological mRNAs. In contrast with PTC recognition, little is known about the mechanisms that trigger the rapid degradation of mammalian nonsense mRNA. Studies have shown that mammalian NMD targets can be degraded via both an SMG6 (where SMG is suppressor of morphological defects on genitalia)-dependent endonucleolytic pathway and a deadenylation and decapping-dependent exonucleolytic pathway, with the possible involvement of SMG5 and SMG7. In contrast, Drosophila melanogaster NMD is confined to the former and Saccharomyces cerevisiae NMD to the latter decay pathway. Consistent with this conclusion, mammals possess both SMG6 and SMG7, whereas D. melanogaster lacks an SMG7 homologue and yeast have no SMG6 equivalent. In the present paper, we review what is known about the degradation of PTC-containing mRNAs so far, paying particular attention to the properties of the NMD-specific factors SMG5–SMG7 and to what is known about the mechanism of degrading mRNAs after they have been committed to the NMD pathway.


2007 ◽  
Vol 27 (16) ◽  
pp. 5630-5638 ◽  
Author(s):  
Lisa Johns ◽  
Andrew Grimson ◽  
Sherry L. Kuchma ◽  
Carrie Loushin Newman ◽  
Philip Anderson

ABSTRACT Eukaryotic mRNAs containing premature translation termination codons (PTCs) are rapidly degraded by a process termed “nonsense-mediated mRNA decay” (NMD). We examined protein-protein and protein-RNA interactions among Caenorhabditis elegans proteins required for NMD. SMG-2, SMG-3, and SMG-4 are orthologs of yeast (Saccharomyces cerevisiae) and mammalian Upf1, Upf2, and Upf3, respectively. A combination of immunoprecipitation and yeast two-hybrid experiments indicated that SMG-2 interacts with SMG-3, SMG-3 interacts with SMG-4, and SMG-2 interacts indirectly with SMG-4 via shared interactions with SMG-3. Such interactions are similar to those observed in yeast and mammalian cells. SMG-2-SMG-3-SMG-4 interactions require neither SMG-2 phosphorylation, which is abolished in smg-1 mutants, nor SMG-2 dephosphorylation, which is reduced or eliminated in smg-5 mutants. SMG-2 preferentially associates with PTC-containing mRNAs. We monitored the association of SMG-2, SMG-3, and SMG-4 with mRNAs of five endogenous genes whose mRNAs are alternatively spliced to either contain or not contain PTCs. SMG-2 associates with both PTC-free and PTC-containing mRNPs, but it strongly and preferentially associates with (“marks”) those containing PTCs. SMG-2 marking of PTC-mRNPs is enhanced by SMG-3 and SMG-4, but SMG-3 and SMG-4 are not detectably associated with the same mRNPs. Neither SMG-2 phosphorylation nor dephosphorylation is required for selective association of SMG-2 with PTC-containing mRNPs, indicating that SMG-2 is phosphorylated only after premature terminations have been discriminated from normal terminations. We discuss these observations with regard to the functions of SMG-2 and its phosphorylation during NMD.


2020 ◽  
Vol 9 (2) ◽  
pp. 289 ◽  
Author(s):  
Monica Borgatti ◽  
Emiliano Altamura ◽  
Francesca Salvatori ◽  
Elisabetta D’Aversa ◽  
Nicola Altamura

Several types of thalassemia (including β039-thalassemia) are caused by nonsense mutations in genes controlling globin production, leading to premature translation termination and mRNA destabilization mediated by the nonsense mediated mRNA decay. Drugs (for instance, aminoglycosides) can be designed to suppress premature translation termination by inducing readthrough (or nonsense suppression) at the premature termination codon. These findings have introduced new hopes for the development of a pharmacologic approach to cure this genetic disease. In the present review, we first summarize the principle and current status of the chemical relief for the expression of functional proteins from genes otherwise unfruitful for the presence of nonsense mutations. Second, we compare data available on readthrough molecules for β0-thalassemia. The examples reported in the review strongly suggest that ribosomal readthrough should be considered as a therapeutic approach for the treatment of β0-thalassemia caused by nonsense mutations. Concluding, the discovery of molecules, exhibiting the property of inducing β-globin, such as readthrough compounds, is of great interest and represents a hope for several patients, whose survival will depend on the possible use of drugs rendering blood transfusion and chelation therapy unnecessary.


2001 ◽  
Vol 21 (5) ◽  
pp. 1515-1530 ◽  
Author(s):  
Feng He ◽  
Allan Jacobson

ABSTRACT In Saccharomyces cerevisiae, rapid degradation of nonsense-containing mRNAs requires the decapping enzyme Dcp1p, the 5′-to-3′ exoribonuclease Xrn1p, and the three nonsense-mediated mRNA decay (NMD) factors, Upf1p, Nmd2p, and Upf3p. To identify specific functions for the NMD factors, we analyzed the mRNA decay phenotypes of yeast strains containing deletions of DCP1 orXRN1 and UPF1, NMD2, or UPF3. Our results indicate that Upf1p, Nmd2p, and Upf3p regulate decapping and exonucleolytic degradation of nonsense-containing mRNAs. In addition, we show that these factors also regulate the same processes in the degradation of wild-type mRNAs. The participation of the NMD factors in general mRNA degradation suggests that they may regulate an aspect of translation termination common to all transcripts.


2008 ◽  
Vol 36 (3) ◽  
pp. 514-516 ◽  
Author(s):  
Jikai Wen ◽  
Saverio Brogna

Translation and mRNA decay are coupled processes; the link is most obvious in the case of NMD (nonsense-mediated mRNA decay). NMD is a mechanism that drastically reduces the level of mRNA harbouring PTCs (premature translation termination codons). The defining event in NMD is premature translation termination and the key question is: what distinguishes premature from normal translation termination? Surprisingly, in mammalian cells, PTC recognition is linked to pre-mRNA splicing. Here, we review the current understanding in view of recent developments.


2009 ◽  
Vol 29 (13) ◽  
pp. 3517-3528 ◽  
Author(s):  
Nadine Wittkopp ◽  
Eric Huntzinger ◽  
Catrin Weiler ◽  
Jérôme Saulière ◽  
Steffen Schmidt ◽  
...  

ABSTRACT The nonsense-mediated mRNA decay (NMD) pathway promotes rapid degradation of mRNAs containing premature translation termination codons (PTCs or nonsense codons), preventing accumulation of potentially detrimental truncated proteins. In metazoa, seven genes (upf1, upf2, upf3, smg1, smg5, smg6, and smg7) have been identified as essential for NMD; here we show that the zebrafish genome encodes orthologs of upf1, upf2, smg1, and smg5 to smg7 and two upf3 paralogs. We also show that Upf1 is required for degradation of PTC-containing mRNAs in zebrafish embryos. Moreover, its depletion has a severe impact on embryonic development, early patterning, and viability. Similar phenotypes are observed in Upf2-, Smg5-, or Smg6-depleted embryos, suggesting that zebrafish embryogenesis requires an active NMD pathway. Using cultured cells, we demonstrate that the ability of a PTC to trigger NMD is strongly stimulated by downstream exon-exon boundaries. Thus, as in mammals and plants but in contrast to invertebrates and fungi, NMD is coupled to splicing in zebrafish. Our results together with previous studies show that NMD effectors are essential for vertebrate embryogenesis and suggest that the coupling of splicing and NMD has been maintained in vertebrates but lost in fungi and invertebrates.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2159 ◽  
Author(s):  
Zhaofeng Gao ◽  
Miles Wilkinson

Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA turnover pathway that has been subject to intense scrutiny. NMD identifies and degrades subsets of normal RNAs, as well as abnormal mRNAs containing premature termination codons. A core factor in this pathway—UPF3B—is an adaptor protein that serves as an NMD amplifier and an NMD branch-specific factor. UPF3B is encoded by an X-linked gene that when mutated causes intellectual disability and is associated with neurodevelopmental disorders, including schizophrenia and autism. Neu-Yilik et al. now report a new function for UPF3B: it modulates translation termination. Using a fully reconstituted in vitro translation system, they find that UPF3B has two roles in translation termination. First, UPF3B delays translation termination under conditions that mimic premature translation termination. This could drive more efficient RNA decay by allowing more time for the formation of RNA decay-stimulating complexes. Second, UPF3B promotes the dissociation of post-termination ribosomal complexes that lack nascent peptide. This implies that UPF3B could promote ribosome recycling. Importantly, the authors found that UPF3B directly interacts with both RNA and the factors that recognize stop codons—eukaryotic release factors (eRFs)—suggesting that UPF3B serves as a direct regulator of translation termination. In contrast, a NMD factor previously thought to have a central regulatory role in translation termination—the RNA helicase UPF1—was found to indirectly interact with eRFs and appears to act exclusively in post-translation termination events, such as RNA decay, at least in vitro. The finding that an RNA decay-promoting factor, UFP3B, modulates translation termination has many implications. For example, the ability of UPF3B to influence the development and function of the central nervous system may be not only through its ability to degrade specific RNAs but also through its impact on translation termination and subsequent events, such as ribosome recycling.


2008 ◽  
Vol 36 (3) ◽  
pp. 497-501 ◽  
Author(s):  
Oliver Mühlemann

Among the different cellular surveillance mechanisms that ensure accurate gene expression, nonsense-mediated mRNA decay rapidly degrades mRNAs harbouring PTCs (premature translation-termination codons) and thereby prevents the accumulation of potentially deleterious proteins with C-terminal truncations. In the present article, I review recent data from yeast, fluitflies, nematode worms and human cells and endeavour to merge these results into a unified model for recognition of nonsense mRNA. According to this model, the distinction between translation termination at PTCs and at ‘normal’ termination codons relies on the physical distance between the terminating ribosome and PABP [poly(A)-binding protein]. Correct translation termination is promoted by a PABP-mediated signal to the terminating ribosome, whereas the absence of this signal leads to the assembly of an mRNA decay-promoting protein complex including the conserved NMD factors UPF (up-frameshift) 1–3.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jyoti Sharma ◽  
Ming Du ◽  
Eric Wong ◽  
Venkateshwar Mutyam ◽  
Yao Li ◽  
...  

AbstractPremature termination codons (PTCs) prevent translation of a full-length protein and trigger nonsense-mediated mRNA decay (NMD). Nonsense suppression (also termed readthrough) therapy restores protein function by selectively suppressing translation termination at PTCs. Poor efficacy of current readthrough agents prompted us to search for better compounds. An NMD-sensitive NanoLuc readthrough reporter was used to screen 771,345 compounds. Among the 180 compounds identified with readthrough activity, SRI-37240 and its more potent derivative SRI-41315, induce a prolonged pause at stop codons and suppress PTCs associated with cystic fibrosis in immortalized and primary human bronchial epithelial cells, restoring CFTR expression and function. SRI-41315 suppresses PTCs by reducing the abundance of the termination factor eRF1. SRI-41315 also potentiates aminoglycoside-mediated readthrough, leading to synergistic increases in CFTR activity. Combining readthrough agents that target distinct components of the translation machinery is a promising treatment strategy for diseases caused by PTCs.


2008 ◽  
Vol 36 (4) ◽  
pp. 698-700 ◽  
Author(s):  
Saverio Brogna ◽  
Preethi Ramanathan ◽  
Jikai Wen

NMD (nonsense-mediated mRNA decay) is a mechanism that degrades transcripts containing PTCs (premature translation termination codons). NMD is a translation-associated process that is expected to take place throughout the cytoplasm. However, recent studies have indicated that the core NMD factors UPF1 (up-frameshift-1), UPF2 and UPF3 can associate with P-bodies (processing bodies), which are large cytoplasmic granules replete with proteins involved in general mRNA decay and related processes. It has been proposed that UPF1 directs PTC-containing mRNAs to P-bodies and triggers decay. Here, we discuss the link between P-bodies and NMD in view of recent studies that suggest that P-bodies are not required for NMD in Drosophila.


Sign in / Sign up

Export Citation Format

Share Document