scholarly journals Identification of functionally distinct macrophage subpopulations in Drosophila

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jonathon Alexis Coates ◽  
Elliot Brooks ◽  
Amy Louise Brittle ◽  
Emma Louise Armitage ◽  
Martin Peter Zeidler ◽  
...  

Vertebrate macrophages are a highly heterogeneous cell population, but whileDrosophilablood is dominated by a macrophage-like lineage (plasmatocytes), until very recently these cells were considered to represent a homogeneous population. Here, we present our identification of enhancer elements labelling plasmatocyte subpopulations, which vary in abundance across development. These subpopulations exhibit functional differences compared to the overall population, including more potent injury responses and differential localisation and dynamics in pupae and adults. Our enhancer analysis identified candidate genes regulating plasmatocyte behaviour: pan-plasmatocyte expression of one such gene (Calnexin14D) improves wound responses, causing the overall population to resemble more closely the subpopulation marked by theCalnexin14D-associated enhancer. Finally, we show that exposure to increased levels of apoptotic cell death modulates subpopulation cell numbers. Taken together this demonstrates macrophage heterogeneity inDrosophila, identifies mechanisms involved in subpopulation specification and function and facilitates the use ofDrosophilato study macrophage heterogeneity in vivo.

2020 ◽  
Author(s):  
Jonathon Alexis Coates ◽  
Amy Brittle ◽  
Emma Louise Armitage ◽  
Martin Peter Zeidler ◽  
Iwan Robert Evans

AbstractMacrophages are a highly heterogeneous population of cells, with this diversity stemming in part from the existence of tissue resident populations and an ability to adopt a variety of activation states in response to stimuli. Drosophila blood cells (hemocytes) are dominated by a lineage of cells considered to be the functional equivalents of mammalian macrophages (plasmatocytes). Until very recently plasmatocytes were thought to be a homogeneous population. Here, we identify enhancer elements that label subpopulations of plasmatocytes, which vary in abundance across the lifecourse of the fly. We demonstrate that these plasmatocyte subpopulations behave in a functionally-distinct manner when compared to the overall population, including more potent migratory responses to injury and decreased clearance of apoptotic cells within the developing embryo. Additionally, these subpopulations display differential localisation and dynamics in pupae and adults, hinting at the presence of tissue-resident macrophages in the fly. Our enhancer analysis also allows us to identify novel candidate genes involved in plasmatocyte behaviour in vivo. Misexpression of one such enhancer-linked gene (calnexin14D) in all plasmatocytes improves wound responses, causing the overall population to behave more like the subpopulation marked by the calnexin14D-associated enhancer. Finally, we show that, we are able to modulate the number of cells within some subpopulations via exposure to increased levels of apoptotic cell death, thereby decreasing the number of plasmatocytes within more wound-responsive subpopulations. Taken together our data demonstrates the existence of macrophage heterogeneity in Drosophila and identifies mechanisms involved in the specification and function of these plasmatocyte subpopulations. Furthermore, this work identifies key molecular tools with which Drosophila can be used as a highly genetically-tractable, in vivo system to study the biology of macrophage heterogeneity.


Blood ◽  
1998 ◽  
Vol 92 (6) ◽  
pp. 2041-2052 ◽  
Author(s):  
Rowayda Peters ◽  
Serge Leyvraz ◽  
Lucien Perey

Bcl-2 and bcl-xL function as suppressors of programmed cell death. The expression of bcl-2 protein in vivo is associated with long-lived hematopoietic cells such as mature lymphocytes and early myeloid progenitors. Bcl-xL, a homologue of bcl-2, is also expressed in lymphocytes and thymocytes. In contrast, the bcl-2-related proteins (bax, bad, and bak) act by promoting apoptotic cell death as shown from their expression in hematopoietic cell lines. We analyzed the expression of bcl-2 and bcl-x proteins in hematopoietic precursors obtained from various cell sources in adult mobilized peripheral blood collected from 13 patients with solid tumors, 8 adult bone marrow, and 12 umbilical cord blood. The analysis was based on the expression of the proliferation and activation specific antigens, CD38 and class II (HLA-DR). Similarly, we analyzed the expression of bcl-2-related proteins bcl-xL, bax, bad, and bak before and during ex-vivo expansion. Hematopoietic precursors expressing strongly the CD34 antigen (CD34s+) and lacking CD38 or HLA-DR expression were analyzed by using three-color immunofluorescence staining. The majority of CD34+ cells expressed bcl-2 and unexpectedly showed a bimodal distribution of low and high expression. More cells that lacked or expressed low density CD38 expressed low bcl-2 than the more differentiated counterparts (those with high density CD38). Immaturity (ie, little or no HLA-DR) is associated with the expression of low bcl-2 compared with HLA-DR+. However, HLA-DR−/low population contained a lower number of cells expressing low bcl-2 (30% to 40%) than CD38−/low in comparable samples. The hematopoietic precursors with bcl-2low and bcl-2high formed a homogeneous population of undifferentiated lymphoid-like cells having a similar forward scatter. These cells expressed strongly the bcl-xL protein (>95%) but were bax low (4% to 12%), bad low (0% to 0.8%), and bak low (0% to 3%). The expression of apoptosis specific protein (ASP) was also low (3.4% ± 3.1%) as was Annexin V. In addition, the CD34+/CD38−showed low cell cycle activity (<2.2%). Induction of apoptosis by overnight incubation of CD34 cells in serum-deprived medium resulted in the upregulation of bcl-2 as a single population histogram. Thus, these results suggest that in quiescent hematopoietic precursors, the bcl-2 protein plays a less prominent role as a survival promoter than bcl-xL and that the low bcl-2 expression did not promote apoptosis. During day 10 of ex vivo expansion of CD34+cells in liquid culture containing stem cell factor, interleukin-3 (IL-3), IL-6, IL-1β, and erythropoietin, the CD34+/CD38− cells expressed high bcl-2 as a single population histogram, and greater than 90% were bcl-xL high. However, the expression of pro- and apoptotic antigens increased: bax (10% to 15%), bad (5% to 8%), bak (6% to 14%), and ASP (6% to 10%). These results show the importance of monitoring the expression of these proteins when defining the culture conditions for ex vivo expansion. © 1998 by The American Society of Hematology.


Blood ◽  
1998 ◽  
Vol 92 (6) ◽  
pp. 2041-2052 ◽  
Author(s):  
Rowayda Peters ◽  
Serge Leyvraz ◽  
Lucien Perey

Abstract Bcl-2 and bcl-xL function as suppressors of programmed cell death. The expression of bcl-2 protein in vivo is associated with long-lived hematopoietic cells such as mature lymphocytes and early myeloid progenitors. Bcl-xL, a homologue of bcl-2, is also expressed in lymphocytes and thymocytes. In contrast, the bcl-2-related proteins (bax, bad, and bak) act by promoting apoptotic cell death as shown from their expression in hematopoietic cell lines. We analyzed the expression of bcl-2 and bcl-x proteins in hematopoietic precursors obtained from various cell sources in adult mobilized peripheral blood collected from 13 patients with solid tumors, 8 adult bone marrow, and 12 umbilical cord blood. The analysis was based on the expression of the proliferation and activation specific antigens, CD38 and class II (HLA-DR). Similarly, we analyzed the expression of bcl-2-related proteins bcl-xL, bax, bad, and bak before and during ex-vivo expansion. Hematopoietic precursors expressing strongly the CD34 antigen (CD34s+) and lacking CD38 or HLA-DR expression were analyzed by using three-color immunofluorescence staining. The majority of CD34+ cells expressed bcl-2 and unexpectedly showed a bimodal distribution of low and high expression. More cells that lacked or expressed low density CD38 expressed low bcl-2 than the more differentiated counterparts (those with high density CD38). Immaturity (ie, little or no HLA-DR) is associated with the expression of low bcl-2 compared with HLA-DR+. However, HLA-DR−/low population contained a lower number of cells expressing low bcl-2 (30% to 40%) than CD38−/low in comparable samples. The hematopoietic precursors with bcl-2low and bcl-2high formed a homogeneous population of undifferentiated lymphoid-like cells having a similar forward scatter. These cells expressed strongly the bcl-xL protein (&gt;95%) but were bax low (4% to 12%), bad low (0% to 0.8%), and bak low (0% to 3%). The expression of apoptosis specific protein (ASP) was also low (3.4% ± 3.1%) as was Annexin V. In addition, the CD34+/CD38−showed low cell cycle activity (&lt;2.2%). Induction of apoptosis by overnight incubation of CD34 cells in serum-deprived medium resulted in the upregulation of bcl-2 as a single population histogram. Thus, these results suggest that in quiescent hematopoietic precursors, the bcl-2 protein plays a less prominent role as a survival promoter than bcl-xL and that the low bcl-2 expression did not promote apoptosis. During day 10 of ex vivo expansion of CD34+cells in liquid culture containing stem cell factor, interleukin-3 (IL-3), IL-6, IL-1β, and erythropoietin, the CD34+/CD38− cells expressed high bcl-2 as a single population histogram, and greater than 90% were bcl-xL high. However, the expression of pro- and apoptotic antigens increased: bax (10% to 15%), bad (5% to 8%), bak (6% to 14%), and ASP (6% to 10%). These results show the importance of monitoring the expression of these proteins when defining the culture conditions for ex vivo expansion. © 1998 by The American Society of Hematology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sachiko Iwai ◽  
Hanako O. Ikeda ◽  
Hisashi Mera ◽  
Kohei Nishitani ◽  
Motoo Saito ◽  
...  

AbstractCurrently there is no effective treatment available for osteoarthritis (OA). We have recently developed Kyoto University Substances (KUSs), ATPase inhibitors specific for valosin-containing protein (VCP), as a novel class of medicine for cellular protection. KUSs suppressed intracellular ATP depletion, endoplasmic reticulum (ER) stress, and cell death. In this study, we investigated the effects of KUS121 on chondrocyte cell death. In cultured chondrocytes differentiated from ATDC5 cells, KUS121 suppressed the decline in ATP levels and apoptotic cell death under stress conditions induced by TNFα. KUS121 ameliorated TNFα-induced reduction of gene expression in chondrocytes, such as Sox9 and Col2α. KUS121 also suppressed ER stress and cell death in chondrocytes under tunicamycin load. Furthermore, intraperitoneal administration of KUS121 in vivo suppressed chondrocyte loss and proteoglycan reduction in knee joints of a monosodium iodoacetate-induced OA rat model. Moreover, intra-articular administration of KUS121 more prominently reduced the apoptosis of the affected chondrocytes. These results demonstrate that KUS121 protects chondrocytes from stress-induced cell death in vitro and in vivo, and indicate that KUS121 is a promising novel therapeutic agent to prevent the progression of OA.


Author(s):  
Emma Louise Armitage ◽  
Hannah Grace Roddie ◽  
Iwan Robert Evans

AbstractApoptotic cell clearance by phagocytes is a fundamental process during development, homeostasis and the resolution of inflammation. However, the demands placed on phagocytic cells such as macrophages by this process, and the limitations these interactions impose on subsequent cellular behaviours are not yet clear. Here we seek to understand how apoptotic cells affect macrophage function in the context of a genetically-tractable Drosophila model in which macrophages encounter excessive amounts of apoptotic cells. We show that loss of the glial transcription factor repo, and corresponding removal of the contribution these cells make to apoptotic cell clearance, causes macrophages in the developing embryo to be challenged with large numbers of apoptotic cells. As a consequence, macrophages become highly vacuolated with cleared apoptotic cells and their developmental dispersal and migration is perturbed. We also show that the requirement to deal with excess apoptosis caused by a loss of repo function leads to impaired inflammatory responses to injury. However, in contrast to migratory phenotypes, defects in wound responses cannot be rescued by preventing apoptosis from occurring within a repo mutant background. In investigating the underlying cause of these impaired inflammatory responses, we demonstrate that wound-induced calcium waves propagate into surrounding tissues, including neurons and glia of the ventral nerve cord, which exhibit striking calcium waves on wounding, revealing a previously unanticipated contribution of these cells during responses to injury. Taken together these results demonstrate important insights into macrophage biology and how repo mutants can be used to study macrophage-apoptotic cell interactions in the fly embryo.Furthermore, this work shows how these multipurpose cells can be ‘overtasked’ to the detriment of their other functions, alongside providing new insights into which cells govern macrophage responses to injury in vivo.


2021 ◽  
Author(s):  
Takumi Kawaue ◽  
Ivan Yow ◽  
Anh Phuong Le ◽  
Yuting Lou ◽  
Mavis Loberas ◽  
...  

The number of cells in tissues is tightly controlled by cell division and cell death, and misregulation of cell numbers could lead to pathological conditions such as cancer. To maintain cell numbers in a tissue, a cell elimination process named programmed cell death or apoptosis, stimulates the proliferation of neighboring cells. This mechanism is called apoptosis-induced compensatory proliferation, which was originally reported more than 40 years ago. While only a limited number of the neigboring cells need to divide to compensate for apoptotic cell loss, the mechanisms that select cells for undergoing division remain an open question. Here we found that the spatial inhomogeneity in mechanotransduction through a growth-promoting transcription co-activator Yes-associated protein (YAP) in the neighboring tissue, accounts for the inhomogeneity of compensatory proliferation. Such inhomogeneous mechanotransduction arises from the combination of the non-uniform distribution of nuclear size, which is inherent in tissues, and the non-uniform pattern of mechanical force applied to the neighboring cells upon apoptosis. Our findings from a mechanical perspective complement the current biochemical understanding of compensatory growth and provide additional insights into cellular functions of how tissue precisely maintains its homeostasis.


2003 ◽  
Vol 44 (5) ◽  
pp. 2184 ◽  
Author(s):  
Kan Koizumi ◽  
Vassiliki Poulaki ◽  
Sven Doehmen ◽  
Gerhard Welsandt ◽  
Sven Radetzky ◽  
...  

2012 ◽  
Vol 196 (4) ◽  
pp. 513-527 ◽  
Author(s):  
Anat Florentin ◽  
Eli Arama

Essentially, all metazoan cells can undergo apoptosis, but some cells are more sensitive than others to apoptotic stimuli. To date, it is unclear what determines the apoptotic potential of the cell. We set up an in vivo system for monitoring and comparing the activity levels of the two main effector caspases in Drosophila melanogaster, Drice and Dcp-1. Both caspases were activated by the apoptosome after irradiation. However, whereas each caspase alone could induce apoptosis, Drice was a more effective inducer of apoptosis than Dcp-1, which instead had a role in establishing the rate of cell death. These functional differences are attributed to their intrinsic properties rather than merely their tissue specificities. Significantly, the levels of the procaspases are directly proportional to their activity levels and play a key role in determining the cell’s sensitivity to apoptosis. Finally, we provide evidence for the existence of a cellular execution threshold of caspase activity, which must be reached to induce apoptosis.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3154
Author(s):  
Su Jin Lee ◽  
Oh-Shin Kwon

The combination of chemotherapy with chemosensitizing agents is a common approach to enhance anticancer activity while reducing the dose-dependent adverse side effects of cancer treatment. Herein, we investigated doxorubicin (DOX) and O-GlcNAc transferase (OGT) inhibitor OSMI-1 combination treatment, which significantly enhanced apoptosis in hepatocellular carcinoma cells (HepG2) as a result of synergistic drug action in disparate stress signaling pathways. Treatment with a low dose of DOX or a suboptimal dose of OSMI-1 alone did not induce apoptotic cell death in HepG2 cells. However, the combination of DOX with OSMI-1 in HepG2 cells synergistically increased apoptotic cell death through the activation of both the p53 and mitochondrial Bcl2 pathways compared to DOX alone. We also demonstrated that the combination of DOX and OSMI-1 stimulated cell death, dramatically reducing cell proliferation and tumor growth in vivo using a HepG2 xenograft mouse model. These findings indicate that OSMI-1 acts as a potential chemosensitizer by enhancing DOX-induced cell death. This study provides insight into a possible mechanism of chemotherapy resistance, identifies potential novel drug targets, and suggests that OGT inhibition could be utilized in clinical applications to treat hepatocellular carcinoma as well as other cancer types.


2019 ◽  
Vol 4 (2) ◽  
pp. 93-95 ◽  
Author(s):  
Jieru Wan ◽  
Honglei Ren ◽  
Jian Wang

Intracerebral haemorrhage (ICH) is a devastating type of stroke with high mortality and morbidity. However, we have few options for ICH therapy and limited knowledge about post-ICH neuronal death and related mechanisms. In the aftermath of ICH, iron overload within the perihaematomal region can induce lethal reactive oxygen species (ROS) production and lipid peroxidation, which contribute to secondary brain injury. Indeed, iron chelation therapy has shown efficacy in preclinical ICH studies. Recently, an iron-dependent form of non-apoptotic cell death known as ferroptosis was identified. It is characterised by an accumulation of iron-induced lipid ROS, which leads to intracellular oxidative stress. The ROS cause damage to nucleic acids, proteins and lipid membranes, and eventually cell death. Recently, we and others discovered that ferroptosis does occur after haemorrhagic stroke in vitro and in vivo and contributes to neuronal death. Inhibition of ferroptosis is beneficial in several in vivo and in vitro ICH conditions. This minireview summarises current research on iron toxicity, lipid peroxidation and ferroptosis in the pathomechanisms of ICH, the underlying molecular mechanisms of ferroptosis and the potential for combined therapeutic strategies. Understanding the role of ferroptosis after ICH will provide a vital foundation for cell death-based ICH treatment and prevention.


Sign in / Sign up

Export Citation Format

Share Document