scholarly journals Complex structures of Rsu1 and PINCH1 reveal a regulatory mechanism of the ILK/PINCH/Parvin complex for F-actin dynamics

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Haibin Yang ◽  
Leishu Lin ◽  
Kang Sun ◽  
Ting Zhang ◽  
Wan Chen ◽  
...  

Communications between actin filaments and integrin-mediated focal adhesion (FA) are crucial for cell adhesion and migration. As a core platform to organize FA proteins, the tripartite ILK/PINCH/Parvin (IPP) complex interacts with actin filaments to regulate the cytoskeleton-FA crosstalk. Rsu1, a Ras suppressor, is enriched in FA through PINCH1 and plays important roles in regulating F-actin structures. Here, we solved crystal structures of the Rsu1/PINCH1 complex, in which the leucine-rich-repeats of Rsu1 form a solenoid structure to tightly associate with the C-terminal region of PINCH1. Further structural analysis uncovered that the interaction between Rsu1 and PINCH1 blocks the IPP-mediated F-actin bundling by disrupting the binding of PINCH1 to actin. Consistently, overexpressing Rsu1 in HeLa cells impairs stress fiber formation and cell spreading. Together, our findings demonstrated that Rsu1 is critical for tuning the communication between F-actin and FA by interacting with the IPP complex and negatively modulating the F-actin bundling.

Author(s):  
Chao Wang ◽  
Yalong Dang ◽  
Ralitsa Loewen ◽  
Susannah Waxman ◽  
Priyal Shah ◽  
...  

Purpose: To investigate the effect of pigment dispersion on trabecular meshwork (TM) cells. Methods: Porcine TM cells from ab interno trabeculectomy specimens were exposed to pigment dispersion, then analyzed for changes in morphology, immunostaining, and ultrastructure. Their abilities to phagocytose, migrate, and contract were quantified. An expression microarray, using 23,937 probes, and a pathway analysis were performed. Results: TM cells readily phagocytosed pigment granules. Pigment induced stress fiber formation (pigment (P): 60.1 ± 0.3%, n = 10, control (C): 38.4 ± 2.5%, n = 11, P < 0.001) and contraction at 24 hours onward (P < 0.01). Phagocytosis declined (P: 68.7 ± 1.3%, C: 37.0 ± 1.1%, n = 3, P < 0.001) and migration was reduced after 6 hours (P: 28.0.1 ± 2.3, n = 12, C: 40.6 ± 3.3, n = 13, P < 0.01). Microarray analysis revealed that Rho, IGF-1, and TGFβ signaling cascades were central to these responses. Conclusions: TM cell exposure to pigment dispersion resulted in reduced phagocytosis and migration, as well as increased stress fiber formation and cell contraction. The Rho signaling pathway played a central and early role, suggesting that its inhibitors could be used as a specific intervention in treatment of pigmentary glaucoma.


2001 ◽  
Vol 281 (2) ◽  
pp. C475-C485 ◽  
Author(s):  
Ramesh M. Ray ◽  
Mary Jane Viar ◽  
Shirley A. McCormack ◽  
Leonard R. Johnson

Polyamines are essential to the migration of epithelial cells in the intestinal mucosa. Cells depleted of polyamines do not attach as rapidly to the extracellular matrix and do not form the actin stress fibers essential for migration. Because both attachment and stress fiber formation depend on integrin signaling and the formation of focal adhesions, we examined these and related processes in polyamine-depleted IEC-6 cells. There was general decreased tyrosine phosphorylation of focal adhesion kinase (FAK), and, specifically, decreased phosphorylation of Tyr-925, the paxillin binding site. In control cells, FAK phosphorylation was rapid after attachment to the extracellular matrix, while attached cells depleted of polyamines had significantly delayed phosphorylation. FAK activity was also significantly inhibited in polyamine-depleted cells as was the phosphorylation of paxillin. Polyamine-depleted cells failed to spread normally after attachment, and immunocytochemistry showed little colocalization of FAK and actin compared with controls. Focal adhesion complex formation was greatly reduced in the absence of polyamines. These data suggest that defective integrin signaling may, at least in part, account for the decreased rates of attachment, actin stress fiber formation, spreading, and migration observed in polyamine-depleted cells.


2011 ◽  
Vol 22 (20) ◽  
pp. 3840-3852 ◽  
Author(s):  
Masao Maeda ◽  
Hitoki Hasegawa ◽  
Toshinori Hyodo ◽  
Satoko Ito ◽  
Eri Asano ◽  
...  

Rho GTPases are molecular switches that transmit biochemical signals in response to extracellular stimuli to elicit changes in the actin cytoskeleton. Rho GTPases cycle between an active, GTP-bound state and an inactive, GDP-bound state. These states are regulated by two distinct families of proteins—guanine nucleotide exchange factors and GTPase-activating proteins (GAPs). We studied the role of a previously uncharacterized GAP, ARHGAP18 (MacGAP). Overexpression of ARHGAP18 suppressed the activity of RhoA and disrupted stress fiber formation. Conversely, silencing of ARHGAP18 by small interfering RNA transfection–enhanced stress fiber formation and induced rounding of cells. We examined the role of ARHGAP18 in cell spreading and migration. Immunofluorescence analysis revealed that ARHGAP18 was localized to the leading edge during cell spreading and migration. ARHGAP18-knockdown cells showed impaired spreading, premature formation of stress fibers, and sustained activation of RhoA upon cell attachment. In addition, knockdown and overexpression of ARHGAP18 resulted in the inhibition and promotion of cell migration, respectively. Furthermore, ARHGAP18 was required for the polarization of cells for migration. Our results define ARHGAP18 as one of the crucial factors for the regulation of RhoA for the control of cell shape, spreading, and migration.


2007 ◽  
Vol 361-363 ◽  
pp. 1055-1058 ◽  
Author(s):  
Miho Nakamura ◽  
Akiko Nagai ◽  
Natalie Ohashi ◽  
Yumi Tanaka ◽  
Yasutaka Sekijima ◽  
...  

The osteoblast adhesion to the substrates are recognized to play a fundamental role in osteoconduction process. The purpose of this study was to evaluate the in vitro behavior of osteoblasts cultured on polarized hydroxyapatite (HA), having the enhanced osteobonding abilities. Osteoblast-like cells were seeded onto the polarized HA and investigated the adhesion and motility. The polarization had no effects on the percentage of the number of the spreaded cells against all the adhered cells, but had significant effects on the elongation of adhered cells from fluorescent observation and on the cell motility showed by the wound healing assay. The charges induced on the HA surface accelerated the cytoskeleton reorganization of the adhered cells cultured on HA specimens. The acceleration was emerged as the cells shape, actin filament pattern such as stress fiber formation, and the prolongation of the cell movement distances.


1998 ◽  
Vol 142 (5) ◽  
pp. 1357-1369 ◽  
Author(s):  
Kairbaan M. Hodivala-Dilke ◽  
C. Michael DiPersio ◽  
Jordan A. Kreidberg ◽  
Richard O. Hynes

Previously we found that α3β1 integrin–deficient neonatal mice develop micro-blisters at the epidermal–dermal junction. These micro-blisters were associated with poor basement membrane organization. In the present study we have investigated the effect of α3β1-deficiency on other keratinocyte integrins, actin-associated proteins and F-actin organization. We show that the absence of α3β1 results in an increase in stress fiber formation in keratinocytes grown in culture and at the basal face of the basal keratinocytes of α3-null epidermis. Moreover, we see a higher concentration of actin-associated proteins such as vinculin, talin, and α-actinin at focal contact sites in the α3-deficient keratinocytes. These changes in focal contact composition were not due to a change in steady-state levels of these proteins, but rather to reorganization due to α3β1 deficiency. Apart from the loss of α3β1 there is no change in expression of the other integrins expressed by the α3-null keratinocytes. However, in functional assays, α3β1 deficiency allows an increase in fibronectin and collagen type IV receptor activities. Thus, our findings provide evidence for a role of α3β1 in regulating stress fiber formation and as a trans-dominant inhibitor of the functions of the other integrins in mouse keratinocytes. These results have potential implications for the regulation of keratinocyte adhesion and migration during wound healing.


2011 ◽  
Vol 301 (5) ◽  
pp. L656-L666 ◽  
Author(s):  
Nathan Sandbo ◽  
Andrew Lau ◽  
Jacob Kach ◽  
Caitlyn Ngam ◽  
Douglas Yau ◽  
...  

Myofibroblast differentiation induced by transforming growth factor-β (TGF-β) and characterized by de novo expression of smooth muscle (SM)-specific proteins is a key process in wound healing and in the pathogenesis of fibrosis. We have previously shown that TGF-β-induced expression and activation of serum response factor (SRF) is required for this process. In this study, we examined the signaling mechanism for SRF activation by TGF-β as it relates to pulmonary myofibroblast differentiation. TGF-β stimulated a profound, but delayed (18–24 h), activation of Rho kinase and formation of actin stress fibers, which paralleled SM α-actin expression. The translational inhibitor cycloheximide blocked these processes without affecting Smad-dependent gene transcription. Inhibition of Rho kinase by Y-27632 or depolymerization of actin by latrunculin B resulted in inhibition TGF-β-induced SRF activation and SM α-actin expression, having no effect on Smad signaling. Conversely, stabilization of actin stress fibers by jasplakinolide was sufficient to drive these processes in the absence of TGF-β. TGF-β promoted a delayed nuclear accumulation of the SRF coactivator megakaryoblastic leukemia-1 (MKL1)/myocardin-related transcription factor-A, which was inhibited by latrunculin B. Furthermore, TGF-β also induced MKL1 expression, which was inhibited by latrunculin B, by SRF inhibitor CCG-1423, or by SRF knockdown. Together, these data suggest a triphasic model for myofibroblast differentiation in response to TGF-β that involves 1) initial Smad-dependent expression of intermediate signaling molecules driving Rho activation and stress fiber formation, 2) nuclear accumulation of MKL1 and activation of SRF as a result of actin polymerization, and 3) SRF-dependent expression of MKL1, driving further myofibroblast differentiation.


2007 ◽  
Vol 293 (1) ◽  
pp. H366-H375 ◽  
Author(s):  
MaryEllen Carlile-Klusacek ◽  
Victor Rizzo

The vasoactive protease thrombin is a known activator of the protease-activated receptor-1 (PAR1) via cleavage of its NH2 terminus. PAR1 activation stimulates the RhoA/Rho kinase signaling cascade, leading to myosin light chain (MLC) phosphorylation, actin stress fiber formation, and changes in endothelial monolayer integrity. Previous studies suggest that some elements of this signaling pathway are localized to caveolin-containing cholesterol-rich membrane domains. Here we show that PAR1 and key components of the PAR-associated signaling cascade localize to membrane rafts and caveolae in bovine aortic endothelial cells (BAEC). To investigate the functional significance of this localization, BAEC were pretreated with filipin (5 μg/ml, 5 min) to ablate lipid rafts before thrombin (100 nM) or PAR agonist stimulation. We found that diphosphorylation of MLC and the actin stress fiber formation normally induced by PAR activation were attenuated after lipid raft disruption. To target caveolae specifically, we used a small interferring RNA approach to knockdown caveolin-1 expression. Thrombin-induced MLC phosphorylation and stress fiber formation were not altered in caveolin-1-depleted cells, suggesting that lipid rafts, but not necessarily caveolae, modulate thrombin-activated signaling pathways leading to alteration of the actin cytoskeleton in endothelial cells.


2012 ◽  
Vol 303 (8) ◽  
pp. C872-C882 ◽  
Author(s):  
Mary E. Ziegler ◽  
Yi-Ping Jin ◽  
Steven H. Young ◽  
Enrique Rozengurt ◽  
Elaine F. Reed

Following transplantation, HLA class I antibodies targeting donor endothelium stimulate cell proliferation and migration, which contribute to the development of transplant vasculopathy and chronic allograft rejection. Dynamic remodeling of the actin cytoskeleton regulates cell proliferation and migration in endothelial cells (ECs), but the mechanism(s) involved remain incompletely understood. We explored anti-HLA class I antibody-mediated alterations of the cytoskeleton in human aortic ECs (HAECs) and contrasted these findings to thrombin-induced cytoskeleton remodeling. Our results identify two different signaling pathways leading to myosin light chain (MLC) phosphorylation in HAECs. Stimulation of HAECs with thrombin at 1 U/ml induced a robust elevation of intracellular Ca2+concentration, increased MLC phosphorylation, and promoted stress fiber formation via MLC kinase (MLCK) and Rho kinase (ROK) in an ERK-independent manner. In contrast, HAECs stimulated with HLA class I antibodies did not promote any detectable change in intracellular Ca2+concentration but instead induced MLC phosphorylation and stress fiber assembly via MLCK and ROK in an ERK1/2-dependent manner. Stimulation of HAECs with low-dose thrombin (1 mU/ml) induced signaling cascades that were similar to stimulation with HLA class I antibodies. HLA class I antibodies also stimulated the translocation of mammalian target of rapamycin complex 2 (mTORC2) and ERK1/2 from the cytoplasm to the plasma membrane independently of stress fiber assembly. These findings identify novel roles for HLA class I signaling in ECs and provide new insights into the role of ERK1/2 and mTORC2 in cytoskeleton regulation, which may be important in promoting transplant vasculopathy, tumor angiogenesis, and atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document