scholarly journals Learning differentially shapes prefrontal and hippocampal activity during classical conditioning

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jan L Klee ◽  
Bryan C Souza ◽  
Francesco P Battaglia

The ability to use sensory cues to inform goal directed actions is a critical component of behavior. To study how sounds guide anticipatory licking during classical conditioning, we employed high-density electrophysiological recordings from the hippocampal CA1 area and the prefrontal cortex (PFC) in mice. CA1 and PFC neurons undergo distinct learning dependent changes at the single cell level and maintain representations of cue identity at the population level. In addition, reactivation of task-related neuronal assemblies during hippocampal awake Sharp-Wave Ripples (aSWR) changed within individual sessions in CA1 and over the course of multiple sessions in PFC. Despite both areas being highly engaged and synchronized during the task, we found no evidence for coordinated single cell or assembly activity during conditioning trials or aSWR. Taken together, our findings support the notion that persistent firing and reactivation of task-related neural activity patterns in CA1 and PFC support learning during classical conditioning.

2020 ◽  
Author(s):  
Jan L. Klee ◽  
Bryan C. Souza ◽  
Francesco P. Battaglia

AbstractThe ability to use sensory cues to inform goal directed actions is a central element of intelligent behavior, and depends on multiple high order cortical areas. Here, we employed high-density electrophysiological recordings from the hippocampal CA1 area and the prefrontal cortex (PFC) while mice learned to respond to sensory cues with anticipatory licking. CA1 and PFC neurons undergo distinct learning dependent changes in evoked and sustained sensory cue-related activity during conditioning. At the population level, both areas maintain representations of cue identity during anticipatory behavior. In addition, reactivation of task-related neuronal assemblies during hippocampal awake Sharp-Wave Ripples (aSWR) changed quickly in CA1 within individual sessions and slowly in PFC throughout learning, and reflected reward representations in PFC and stimulus identity in CA1. Together, our results suggest that the brain tracks cue information during anticipatory behavior and that learning shapes reactivation of task-related activity patterns within the CA1-PFC circuit.


Author(s):  
Daniel Deitch ◽  
Alon Rubin ◽  
Yaniv Ziv

AbstractNeuronal representations in the hippocampus and related structures gradually change over time despite no changes in the environment or behavior. The extent to which such ‘representational drift’ occurs in sensory cortical areas and whether the hierarchy of information flow across areas affects neural-code stability have remained elusive. Here, we address these questions by analyzing large-scale optical and electrophysiological recordings from six visual cortical areas in behaving mice that were repeatedly presented with the same natural movies. We found representational drift over timescales spanning minutes to days across multiple visual areas. The drift was driven mostly by changes in individual cells’ activity rates, while their tuning changed to a lesser extent. Despite these changes, the structure of relationships between the population activity patterns remained stable and stereotypic, allowing robust maintenance of information over time. Such population-level organization may underlie stable visual perception in the face of continuous changes in neuronal responses.


Author(s):  
Nadia Rodrigues ◽  
Ana Caulino-Rocha ◽  
Joaquim Ribeiro ◽  
Diana Cunha-Reis

Background and purpose Vasoactive intestinal peptide (VIP), acting on both VPAC and VPAC receptors, is a key modulator of hippocampal synaptic transmission, pyramidal cell excitability and synaptic plasticity phenomena, like long-term depression (LTD), partly through modulation GABAergic disinhibitory circuits. VIP effects on LTP and the involvement of disinhibition were scarcely investigated. Experimental approach The influence of endogenous VIP on CA1 LTP induced by TBS was evaluated in the CA1 area of hippocampal slices using field-excitatory electrophysiological recordings from young-adult Wistar rats using selective VPAC and VPAC antagonists. Phosphorylation of GluA1 AMPA receptor subunits and Kv4.2 potassium channels was evaluated in hippocampal membranes obtained from such slices by Western blot. Key results Here we show that VIP, acting on VPAC (but not VPAC) receptors, is an endogenous inhibitor of hippocampal LTP induced by theta-burst stimulation (TBS) in the CA1 area of the hippocampus of young adult Wistar rats. This effect is dependent on GABAergic transmission and relies on the integrity of NMDA and CaMKII-dependent LTP expression mechanisms but not on PKA and PKC activity. Furthermore, it regulates the expression and Serphosphorylation of Kv4.2 potassium channels responsible for the A-current while inhibiting phosphorylation of Kv4.2 on Thr. Conclusions and implications Altogether this suggests that endogenous VIP controls the expression of hippocampal CA1 LTP by regulating disinhibition through activation of VPAC receptors in interneurons. This may impact the expression and phosphorylation of Kv4.2 K channels at hippocampal pyramidal cell dendrites.


2019 ◽  
Vol 85 (18) ◽  
Author(s):  
Yutaka Yawata ◽  
Tatsunori Kiyokawa ◽  
Yuhki Kawamura ◽  
Tomohiro Hirayama ◽  
Kyosuke Takabe ◽  
...  

ABSTRACT Here we analyzed the innate fluorescence signature of the single microbial cell, within both clonal and mixed populations of microorganisms. We found that even very similarly shaped cells differ noticeably in their autofluorescence features and that the innate fluorescence signatures change dynamically with growth phases. We demonstrated that machine learning models can be trained with a data set of single-cell innate fluorescence signatures to annotate cells according to their phenotypes and physiological status, for example, distinguishing a wild-type Aspergillus nidulans cell from its nitrogen metabolism mutant counterpart and log-phase cells from stationary-phase cells of Pseudomonas putida. We developed a minimally invasive method (confocal reflection microscopy-assisted single-cell innate fluorescence [CRIF] analysis) to optically extract and catalog the innate cellular fluorescence signatures of each of the individual live microbial cells in a three-dimensional space. This technique represents a step forward from traditional techniques which analyze the innate fluorescence signatures at the population level and necessitate a clonal culture. Since the fluorescence signature is an innate property of a cell, our technique allows the prediction of the types or physiological status of intact and tag-free single cells, within a cell population distributed in a three-dimensional space. Our study presents a blueprint for a streamlined cell analysis where one can directly assess the potential phenotype of each single cell in a heterogenous population by its autofluorescence signature under a microscope, without cell tagging. IMPORTANCE A cell’s innate fluorescence signature is an assemblage of fluorescence signals emitted by diverse biomolecules within a cell. It is known that the innate fluoresce signature reflects various cellular properties and physiological statuses; thus, they can serve as a rich source of information in cell characterization as well as cell identification. However, conventional techniques focus on the analysis of the innate fluorescence signatures at the population level but not at the single-cell level and thus necessitate a clonal culture. In the present study, we developed a technique to analyze the innate fluorescence signature of a single microbial cell. Using this novel method, we found that even very similarly shaped cells differ noticeably in their autofluorescence features, and the innate fluorescence signature changes dynamically with growth phases. We also demonstrated that the different cell types can be classified accurately within a mixed population under a microscope at the resolution of a single cell, depending solely on the innate fluorescence signature information. We suggest that single-cell autofluoresce signature analysis is a promising tool to directly assess the taxonomic or physiological heterogeneity within a microbial population, without cell tagging.


2021 ◽  
Vol 20 (9) ◽  
pp. 1909-1914
Author(s):  
Linhua Xiang ◽  
Rong Wu ◽  
Kangling Liu ◽  
Jing Wang

Purpose: To study the protective effect of oxytocin on hypoxic-ischemic brain neuron injury in neonatal rats, and the mechanism of action involved.Methods: Hippocampal slices from neonatal SD rats were cultured in oxygen/glucose-deprived (OGD) solution, leading to establishment of hypoxic-ischemic model of hippocampal slices in vitro. The slices were assigned to 3 groups: control (ACSF solution), model (OGD solution), and oxytocin (OGD solution + 1 μM oxytocin). The effect of oxytocin on vertebral neurons in hippocampal CA1 region of HIBD rats was determined using TOPRO-3 staining, while the effects of oxytocin on hypoxic depolarization (AD) and inhibitory postsynaptic currents (iPSCs) were measured by cell patch clamp technique.Results: The fluorescence intensity of vertebral lamina in hippocampal CA1 area of model group was significantly higher than that of control group, while the corresponding value for oxytocin group was significantly lower than that of model group (p < 0.05). The time lapse before occurrence of AD in hippocampal CA1 area was significantly longer in oxytocin group than in model group, while the time lapse before neuronal AD in oxytocin receptor antagonist group was lower than that in oxytocin group. The frequency and amplitude of iPSCs in oxytocin group were markedly higher than the corresponding control values.Conclusion: Oxytocin exerts protective effect against hypoxic-ischemic brain neuronal damage in neonatal rats by regulating the activation of oxytocin receptor and GABA receptor, and inhibiting nerve transmission. These findings may be of benefit in the development of a suitable therapy for HIBD.


Lab on a Chip ◽  
2009 ◽  
Vol 9 (18) ◽  
pp. 2644 ◽  
Author(s):  
Luca Berdondini ◽  
Kilian Imfeld ◽  
Alessandro Maccione ◽  
Mariateresa Tedesco ◽  
Simon Neukom ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document