Nanometer-scale crystallinity in In–Ga–Zn-oxide thin film deposited at room temperature observed by nanobeam electron diffraction

2014 ◽  
Vol 53 (11) ◽  
pp. 115501 ◽  
Author(s):  
Nao Sorida ◽  
Masahiro Takahashi ◽  
Koji Dairiki ◽  
Shunpei Yamazaki ◽  
Noboru Kimizuka
Author(s):  
Kumar Haunsbhavi ◽  
Karuppiah Deva Arun Kumar ◽  
Paolo Mele ◽  
Omar M. Aldossary ◽  
Mohd Ubaidullah ◽  
...  

2012 ◽  
Vol 482-484 ◽  
pp. 394-397
Author(s):  
Ming Wei Li ◽  
Nan Hai Sun ◽  
Yun Wang Ge ◽  
Bo Lei Yao

This paper presents a new buffering layer(nickle oxide thin film) of organic solar cells. Nickle Oxide(NiO) thin film is a good alternative of hole tansporting layer. We investigates the film from physical and electrical aspects, such as morphology, deposition temperature, thickness etc. We find that the optimum fabrication conditions are: room temperature deposition, 10nm of thickness, and 30% oxygen proportion. The device strcture is Anode/NiO/P3HT[regioregular of poly(3-hexylthiophene)]: PCBM[(6,6)-phenyl C61 butyric acid methyl ester] /Al. And the best power conversion efficiency of device we got with NiO buffering layer is 2.49%, which is hundred times of ones without NiO buffering layer.


Science ◽  
2021 ◽  
Vol 371 (6536) ◽  
pp. 1359-1364
Author(s):  
Wei Hui ◽  
Lingfeng Chao ◽  
Hui Lu ◽  
Fei Xia ◽  
Qi Wei ◽  
...  

The stabilization of black-phase formamidinium lead iodide (α-FAPbI3) perovskite under various environmental conditions is considered necessary for solar cells. However, challenges remain regarding the temperature sensitivity of α-FAPbI3 and the requirements for strict humidity control in its processing. Here we report the synthesis of stable α-FAPbI3, regardless of humidity and temperature, based on a vertically aligned lead iodide thin film grown from an ionic liquid, methylamine formate. The vertically grown structure has numerous nanometer-scale ion channels that facilitate the permeation of formamidinium iodide into the lead iodide thin films for fast and robust transformation to α-FAPbI3. A solar cell with a power-conversion efficiency of 24.1% was achieved. The unencapsulated cells retain 80 and 90% of their initial efficiencies for 500 hours at 85°C and continuous light stress, respectively.


2014 ◽  
Vol 1053 ◽  
pp. 332-336 ◽  
Author(s):  
Ya Qiao ◽  
Yuan Lu ◽  
Hua Yang ◽  
Yong Shun Ling

Low valence vanadium oxide thin film was deposited on ordinary glass substrates by direct current (DC) magnetron sputtering from a vanadium metal target. And then it was annealed in an atmosphere of oxygen/argon mixture at the temperature of 450°C for 2hours to obtain VO2thin film possessing the ability of phase transition. The XRD patterns and resistance-temperature (R-T) curves of the film before and after the annealing were given. The results show that: the as-deposited film, whose main component is V2O3, presents no phase transition and its resistance changes from 1.26 kΩ~1.01kΩ while its temperature rising from room temperature to 80°C; the annealed film, whose main component is VO2, presents a phase transition when its temperature rising from room temperature to 80°C and its resistance changes from 10kΩ to 60Ω, more than two orders. And the phase transition temperature of the film deposited is only 30°C.


Sign in / Sign up

Export Citation Format

Share Document