A Generalized Phase Space Optical Analysis of X-Ray Optical Systems Using Crystal Monochromators

1978 ◽  
Vol 17 (S2) ◽  
pp. 449 ◽  
Author(s):  
Tadashi Matsushita ◽  
Ukyo Kaminaga ◽  
Kazutake Kohra
1998 ◽  
Author(s):  
Alexander V. Liutcau ◽  
Alexander V. Kotelkin ◽  
Alexander D. Zvonkov ◽  
Dimitrii B. Mateev ◽  
Svetlana V. Nikitina ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Julia Marí-Guaita ◽  
Amal Bouich ◽  
Bernabé Marí

In this work, FAPbI3 thin films with different antisolvents (toluene, diethyl ether and chlorobenzene) were successfully elaborated by the spin coating technique to study the influence of the different antisolvents in the films. The crystal structure, surface morphology and optical properties were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) photoluminescence and UV–visible spectrometry. According to XRD, the crystalline structure of FAPbI3 was found in the orientation of the (110) plane, and it is observed that the type of antisolvent content in the absorber layer plays an important role in the growth and stabilization of the film. Here, chlorobenzene leads to a smooth and homogenous surface, a large grain size and a pinhole-free perovskite film. Additionally, the optical analysis revealed that the band gap is in the range from 1.55 to 1.57 eV. Furthermore, in an approximately 60% humidity environment and after two weeks, the stability and absorption of FaPbI3 showed low degradation.


2019 ◽  
Vol 26 (3) ◽  
pp. 660-676 ◽  
Author(s):  
Adrian P. Mancuso ◽  
Andrew Aquila ◽  
Lewis Batchelor ◽  
Richard J. Bean ◽  
Johan Bielecki ◽  
...  

The European X-ray Free-Electron Laser (FEL) became the first operational high-repetition-rate hard X-ray FEL with first lasing in May 2017. Biological structure determination has already benefitted from the unique properties and capabilities of X-ray FELs, predominantly through the development and application of serial crystallography. The possibility of now performing such experiments at data rates more than an order of magnitude greater than previous X-ray FELs enables not only a higher rate of discovery but also new classes of experiments previously not feasible at lower data rates. One example is time-resolved experiments requiring a higher number of time steps for interpretation, or structure determination from samples with low hit rates in conventional X-ray FEL serial crystallography. Following first lasing at the European XFEL, initial commissioning and operation occurred at two scientific instruments, one of which is the Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument. This instrument provides a photon energy range, focal spot sizes and diagnostic tools necessary for structure determination of biological specimens. The instrumentation explicitly addresses serial crystallography and the developing single particle imaging method as well as other forward-scattering and diffraction techniques. This paper describes the major science cases of SPB/SFX and its initial instrumentation – in particular its optical systems, available sample delivery methods, 2D detectors, supporting optical laser systems and key diagnostic components. The present capabilities of the instrument will be reviewed and a brief outlook of its future capabilities is also described.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1733-C1733
Author(s):  
Martin Fuchs ◽  
Robert Sweet ◽  
Lonny Berman ◽  
Dileep Bhogadi ◽  
Wayne Hendrickson ◽  
...  

We present the final design of the x-ray optical systems and experimental stations of the two macromolecular crystallography (MX) beamlines, FMX and AMX, at the National Synchrotron Light Source-II (NSLS-II). Along with its companion x-ray scattering beamline, LIX, this suite of Advanced Beamlines for Biological Investigations with X-rays (ABBIX, [1]) will begin user operation in 2016. The pair of MX beamlines with complementary and overlapping capabilities is located at canted undulators (IVU21) in sector 17-ID. The Frontier Microfocusing Macromolecular Crystallography beamline (FMX) will deliver a photon flux of ~5x10^12 ph/s at a wavelength of 1 Å into a spot of 1 - 50 µm size. It will cover a broad energy range from 5 - 30 keV, corresponding to wavelengths from 0.4 - 2.5 Å. The highly Automated Macromolecular Crystallography beamline (AMX) will be optimized for high throughput applications, with beam sizes from 4 - 100 µm, an energy range of 5 - 18 keV (0.7 - 2.5 Å), and a flux at 1 Å of ~10^13 ph/s. Central components of the in-house-developed experimental stations are a 100 nm sphere of confusion goniometer with a horizontal axis, piezo-slits to provide dynamic beam size changes during diffraction experiments, a dedicated secondary goniometer for crystallization plates, and sample- and plate-changing robots. FMX and AMX will support a broad range of biomedical structure determination methods from serial crystallography on micron-sized crystals, to structure determination of complexes in large unit cells, to rapid sample screening and data collection of crystals in trays, for instance to characterize membrane protein crystals and to conduct ligand-binding studies. Together with the solution scattering program at LIX, the new beamlines will offer unique opportunities for advanced diffraction experiments with micro- and mini-beams, with next generation hybrid pixel array detectors and emerging crystal delivery methods such as acoustic droplet ejection. This work is supported by the US National Institutes of Health.


2015 ◽  
Vol 22 (4) ◽  
pp. 946-955 ◽  
Author(s):  
Nazanin Samadi ◽  
Bassey Bassey ◽  
Mercedes Martinson ◽  
George Belev ◽  
Les Dallin ◽  
...  

The stability of the photon beam position on synchrotron beamlines is critical for most if not all synchrotron radiation experiments. The position of the beam at the experiment or optical element location is set by the position and angle of the electron beam source as it traverses the magnetic field of the bend-magnet or insertion device. Thus an ideal photon beam monitor would be able to simultaneously measure the photon beam's position and angle, and thus infer the electron beam's position in phase space. X-ray diffraction is commonly used to prepare monochromatic beams on X-ray beamlines usually in the form of a double-crystal monochromator. Diffraction couples the photon wavelength or energy to the incident angle on the lattice planes within the crystal. The beam from such a monochromator will contain a spread of energies due to the vertical divergence of the photon beam from the source. This range of energies can easily cover the absorption edge of a filter element such as iodine at 33.17 keV. A vertical profile measurement of the photon beam footprint with and without the filter can be used to determine the vertical centroid position and angle of the photon beam. In the measurements described here an imaging detector is used to measure these vertical profiles with an iodine filter that horizontally covers part of the monochromatic beam. The goal was to investigate the use of a combined monochromator, filter and detector as a phase-space beam position monitor. The system was tested for sensitivity to position and angle under a number of synchrotron operating conditions, such as normal operations and special operating modes where the photon beam is intentionally altered in position and angle at the source point. The results are comparable with other methods of beam position measurement and indicate that such a system is feasible in situations where part of the synchrotron beam can be used for the phase-space measurement.


IUCrJ ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 66-71 ◽  
Author(s):  
Cristian-R. Boruntea ◽  
Peter N. R. Vennestrøm ◽  
Lars F. Lundegaard

During screening of the phase space using KOH and 1-methyl-4-aza-1-azoniabicyclo[2.2.2]octane hydroxide (1-methyl-DABCO) under hydrothermal zeolite synthesis conditions, K-paracelsian was synthesized. Scanning electron microscopy, energy dispersive X-ray spectroscopy and ex situ powder X-ray diffraction analysis revealed a material that is compositionally closely related to the mineral microcline and structurally closely related to the mineral paracelsian, both of which are feldspars. In contrast to the feldspars, K-paracelsian contains intrazeolitic water corresponding to one molecule per cage. In the case of K-paracelsian it might be useful to consider it a link between feldspars and zeolites. It was also shown that K-paracelsian can be described as the simplest endmember of a family of dense double-crankshaft zeolite topologies. By applying the identified building principle, a number of known zeolite topologies can be constructed. Furthermore, it facilitates the construction of a range of hypothetical small-pore structures that are crystallo-chemically healthy, but which have not yet been realized experimentally.


2009 ◽  
Vol 23 (20n21) ◽  
pp. 4170-4185 ◽  
Author(s):  
C. M. SARRIS ◽  
A. N. PROTO

We describe how the specific heat of a quantum system is related to a positive definite metric defined on the generalized phase space in which the dynamics and thermodynamics of the system take place. This relationship is given through the components of a second-rank covariant metric tensor, enhancing a topological nature of the specific heat. We also present two examples where it can be seen how the uncertainty principle imposes strong constraints on the values achieved by the specific heat showing its inherent quantum nature.


Sign in / Sign up

Export Citation Format

Share Document