Random Trap Fluctuation (RTF) Induced Vth Variability and the Impact on the Reliability of Strained-Silicon CMOS Devices

2011 ◽  
Author(s):  
E. R. Hsieh ◽  
C. Y. Cheng ◽  
S. S. Chung ◽  
C. H. Tsai ◽  
R. M. Huang ◽  
...  
2003 ◽  
Vol 19 (1) ◽  
pp. L4-L8 ◽  
Author(s):  
J G Fiorenza ◽  
G Braithwaite ◽  
C W Leitz ◽  
M T Currie ◽  
J Yap ◽  
...  

Author(s):  
Keivan Etessam-Yazdani ◽  
Wenjun Liu ◽  
Yizhang Yang ◽  
Mehdi Asheghi

This manuscript investigates the relevance and impact of nanoscale thermal phenomena in the state-of-the-art semiconductor device technologies such as: silicon-on-insulator (SOI), strained silicon, and tri-gate CMOS transistors. The experimental data and predictions for thin silicon layer thermal conductivity and the solutions of the Boltzmann transport equations (BTE) for phonon transport in strained-Si/Ge bi-layer configuration are used to estimate the thermal resistance of the SOI, tri-gate, and strained-silicon-on-SiGe-on-insulator (SGOI) transistors, respectively. In particular, the impact of SiGe underlayer and interface roughness on the lateral thermal conductivity of the silicon layer at room temperature is investigated. In order to avoid the complexity of the BTE for predictions of the temperature distribution, Lumped Analytical (LA) models are introduced that are simple to implement and also adequate enough to capture the sub-continuum effects. It is concluded that the SOI, SGOI and tri-gate transistors are all susceptible to self-heating for very thin silicon device layers.


2014 ◽  
Vol 918 ◽  
pp. 237-242
Author(s):  
Bin Zhou ◽  
Xin Chun Wu ◽  
Ming Xue Huo

Single event transient of a PMOS using strained Silicon-Germanium in a sub-100nm bulk process is studied by 3D TCAD simulation. The impact of bias voltage, temperature, LET, and struck position on SET is considered. Our simulation results demonstrate that bias voltage in the range 0.8 to 1.2V greatly influence the amplitude of SET current. Temperature has a stronger influence on a SiGe channel PMOS than a Si-channel PMOS. Both SET current duration and total collection charge increase as LET increases, and SET current duration and total collection of a SiGe channel PMOS are larger than that of Si channel PMOS. These simulation results are beneficial to the space application of SiGe circuits.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.


Sign in / Sign up

Export Citation Format

Share Document