scholarly journals Design and Characterization of a Compact Single Layer Modified S-Shaped Tag Antenna for UHF-RFID Applications

2019 ◽  
Vol 8 (1) ◽  
pp. 59-65 ◽  
Author(s):  
M. A. Ennasar ◽  
I. Aznabet ◽  
O. EL Mrabet ◽  
M. Essaaidi

In this paper, we report the design of a new compact single layer modified S-shaped tag antenna for UHF-RFID applications. To achieve a compact size of 51×34 mm2 for this tag antenna, the technique of using S shaped strip is applied, and by further adding a pair of equilateral triangular stubs into this structure, good impedance matching can be obtained at 915 MHz, which is the center frequency of the North-American UHF-RFID band (902 to 928 MHz). Besides exhibiting acceptable 5m read range in free space at 915 MHz, the proposed design shows a read range of about 4.5 when mounted on a metallic object (200 ×30 cm2) separated by spacer foam of thickness 1 cm. Furthermore, the proposed design shows a reasonable read ranges when it is mounted on different dielectrics with low permittivity. The proposed design has a simple configuration, low cost, acceptable read range, and can work on various background materials.  

2021 ◽  
Author(s):  
Mahmoud Wagih ◽  
Junjie Shi

Owing to its low relative permittivity, very few microwave sensors have been developed for monitoring ice deposition. This paper presents the first use of UHF RFID tags for wireless RF ice sensing applications. Despite its low permittivity, the existence of ice as a superstrate on a planar ultra-thin dipole antenna can lower the resonance frequency of the antenna significantly. The RFID tags, having a measured unloaded range of 9.4 m, were evaluated for remotely detecting the formation of ice in various scenarios and up to 10~m from the reader, as well as monitoring the ice thawing, based on the Relative Signal Strength (RSS) in a phase-free approach. Unlike conventional RSS-based sensing approaches where the tag's read-range is reduced as the RSS decreases in response to the stimulant, the ice superstrate improves the impedance matching of the tags, maintaining a 10 m loaded read-range with over 12 dB ice-sensitivity, in an echoic multi-path environment. The long range and high sensitivity show that UHF RFID is a promising method of detecting and monitoring ice formation and thawing in future smart cities.


2021 ◽  
Author(s):  
Mahmoud Wagih ◽  
Junjie Shi

Owing to its low relative permittivity, very few microwave sensors have been developed for monitoring ice deposition. This paper presents the first use of UHF RFID tags for wireless RF ice sensing applications. Despite its low permittivity, the existence of ice as a superstrate on a planar ultra-thin dipole antenna can lower the resonance frequency of the antenna significantly. The RFID tags, having a measured unloaded range of 9.4 m, were evaluated for remotely detecting the formation of ice in various scenarios and up to 10~m from the reader, as well as monitoring the ice thawing, based on the Relative Signal Strength (RSS) in a phase-free approach. Unlike conventional RSS-based sensing approaches where the tag's read-range is reduced as the RSS decreases in response to the stimulant, the ice superstrate improves the impedance matching of the tags, maintaining a 10 m loaded read-range with over 12 dB ice-sensitivity, in an echoic multi-path environment. The long range and high sensitivity show that UHF RFID is a promising method of detecting and monitoring ice formation and thawing in future smart cities.


2021 ◽  
Author(s):  
Mahmoud Wagih ◽  
Junjie Shi

Owing to its low relative permittivity, very few microwave sensors have been developed for monitoring ice deposition. This paper presents the first use of UHF RFID tags for wireless RF ice sensing applications. Despite its low permittivity, the existence of ice as a superstrate on a planar ultra-thin dipole antenna can lower the resonance frequency of the antenna significantly. The RFID tags, having a measured unloaded range of 9.4 m, were evaluated for remotely detecting the formation of ice in various scenarios and up to 10~m from the reader, as well as monitoring the ice thawing, based on the Relative Signal Strength (RSS) in a phase-free approach. Unlike conventional RSS-based sensing approaches where the tag's read-range is reduced as the RSS decreases in response to the stimulant, the ice superstrate improves the impedance matching of the tags, maintaining a 10 m loaded read-range with over 12 dB ice-sensitivity, in an echoic multi-path environment. The long range and high sensitivity show that UHF RFID is a promising method of detecting and monitoring ice formation and thawing in future smart cities.


2014 ◽  
Vol 541-542 ◽  
pp. 458-461
Author(s):  
Pu Yu Duan ◽  
Dong Wang

Cylinder is a common object and used in logistics industry, such as liquid container like wine. The performance of tags that are used on these objects declines, especially the read range and the radiation pattern of the tag. In this paper, a type of UHF tag antenna directly mountable on the cylinder surface. In order to reduce the impact of the deformation, the tag is designed with meander-line but not symmetrical. Antenna is combined with T-matching network to ensure good impedance matching. Compared with the basic dipole antenna tag both cylinder and plane surface, we can get the prominent feature of the tag proposed in this paper.


2020 ◽  
Vol 12 (10) ◽  
pp. 1020-1028
Author(s):  
Chawanat Lerkbangplad ◽  
Alongkorn Namahoot ◽  
Prayoot Akkaraekthalin ◽  
Suramate Chalermwisutkul

AbstractIn this paper, a compact circularly polarized quadrifilar antenna with planar inverted-F antenna (PIFA) elements is presented. The proposed antenna consists of four PIFA elements and a Wilkinson divider-based feed network fabricated on FR-4 substrate (ɛr = 4.4, loss tangent = 0.02, thickness = 1.6 mm). The total size of the antenna is 120 × 120 × 13.2 mm3. Impedance matching with a reflection coefficient <−15 dB and an axial ratio (AR) <3 dB are achieved over the global ultra-high frequency (UHF) radio frequency identification (RFID) frequency band and beyond. The realized gain ranges from 2.25 to 3.75 dBic within the frequency band of interest from 860 to 960 MHz with a directional radiation pattern. The proposed antenna is compact, low-cost and extremely wideband in terms of matching and AR compared to state-of-the-art UHF RFID reader antennas.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hang Wong ◽  
Kai Xu Wang ◽  
Laure Huitema ◽  
Aurelian Crunteanu

Abstract Active meta polarizers based on phase-change materials have recently led to emerging developments in terahertz devices and systems for imaging, security, and high-speed communications. Existing technologies of adaptive control of meta polarizers are limited to the complexity of external stimuli. Here, we introduce an active terahertz polarizer consisting of a single layer of large array patterns of vanadium dioxide material integrated with metallic patch matrix to dynamically reconfigure the polarization of the terahertz waves. The proposed active polarizer is simple in structure and can independently manipulate the polarization of the incident THz waves in two orthogonal directions. In addition, the device can also be performing as a highly efficient reflector at the same frequencies. We demonstrate that efficient and fast polarization changes of THz waves can be achieved over a wide operating bandwidth. Compared with other active polarizers using mechanical, optical and thermal controls, it can be conveniently manipulated with DC bias without any external actuators, intense laser source or heater. Therefore, with the advantages of high efficiency, compact size, low loss, low cost and fast response, the proposed polarizer can be highly integrative and practical to operate within adaptive terahertz circuits and systems.


2016 ◽  
Vol 2016 (NOR) ◽  
pp. 12-16 ◽  
Author(s):  
Erja Sipilä ◽  
Johanna Virkki ◽  
Lauri Sydänheimo ◽  
Leena Ukkonen

The growth of the wireless world, especially the increasing popularity of the Internet of Things, has created a need for cost-effective and environmentally friendly electronics. Great potential lies especially in versatile applications of passive UHF RFID components. However, the reliability of these components is a major issue to be addressed. This paper presents a preliminary reliability study of glue-coated and non-coated brush-painted copper tags on a plywood substrate in high humidity conditions. The passive UHF RFID components presented in this paper are fabricated using brush-painting and photonic sintering of cost-effective copper oxide ink directly on a plywood substrate. The performance of the glue-coated and non-coated tags is evaluated through wireless tag measurements before and after high humidity testing. The measurement results show that the copper tags on plywood substrate initially achieve peak read ranges of 7–8 meters and the applied coating does not affect to the read range. Moisture does not prevent the coated tags from working in a tolerable way, although the tag performance slightly temporarily decreases due to the moisture absorption. However, when the moisture exposure is long, the performance degradation comes irreversible. The absorbed moisture decreases the read range of the non-coated tags and the performance does not return back to normal after drying. Hence, the coating improves the reliability of the tags in a moist environment compared to the non-coated tags. Based on our results, the plywood material and the used manufacturing methods are very potential for low-cost, high-volume green electronics manufacturing.


2016 ◽  
Vol 9 (3) ◽  
pp. 599-605 ◽  
Author(s):  
Saurabh Kumar ◽  
Dinesh Kumar Vishwakarma

In this paper, a miniaturized coaxial feed curved-slotted microstrip patch antenna over a fractalized uniplanar compact electromagnetic bandgap (F-UC-EBG) ground plane is proposed and investigated. Compact size is achieved by cutting the curved slots along the orthogonal directions of the patch radiator. The curved-slotted microstrip patch antenna is 38.30% miniaturized as compared with the conventional microstrip patch antenna resonating at 2.38 GHz. Furthermore, the ordinary ground plane of the curved slotted patch antenna is replaced by the F-UC-EBG ground plane. Due to the slow wave phenomenon created in the F-UC-EBG structure and the better impedance matching at the lower frequency further miniaturization and improved performance are obtained. The proposed antenna shows 74.76% miniaturization as compared with the conventional microstrip patch antenna resonating at 1.57 GHz and has 2.61% 10-dB fractional bandwidth, 1.49 dB gain, and 81.59% radiation efficiency. The proposed antenna is fabricated on a low-cost FR4 substrate having an overall volume of 0.184λ0 × 0.184λ0 × 0.0236λ0 at 1.57 GHz GPS band. The measured and simulated results are in good agreement and predicting appropriateness of the antenna in portable and handheld communication systems for GPS applications.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Zijian Xing ◽  
Ling Wang ◽  
Changying Wu ◽  
Jianying Li ◽  
Meng Zhang

A broadband two-layer and two quasihalf loops antenna (TTLA) at UHF is characterized and analyzed for ultrahigh frequency (UHF) near-field radiofrequency identification (RFID) applications. The antenna is investigated in terms of impedance matching and distribution of magnetic field as well as applied in two scenarios which are the experiments of interrogation range and receiver circuit of RFID systems.


Sign in / Sign up

Export Citation Format

Share Document