scholarly journals Detecting security attacks in cyber-physical systems: a comparison of Mule and WSO2 intelligent IoT architectures

2021 ◽  
Vol 7 ◽  
pp. e787
Author(s):  
José Roldán-Gómez ◽  
Juan Boubeta-Puig ◽  
Gabriela Pachacama-Castillo ◽  
Guadalupe Ortiz ◽  
Jose Luis Martínez

The Internet of Things (IoT) paradigm keeps growing, and many different IoT devices, such as smartphones and smart appliances, are extensively used in smart industries and smart cities. The benefits of this paradigm are obvious, but these IoT environments have brought with them new challenges, such as detecting and combating cybersecurity attacks against cyber-physical systems. This paper addresses the real-time detection of security attacks in these IoT systems through the combined used of Machine Learning (ML) techniques and Complex Event Processing (CEP). In this regard, in the past we proposed an intelligent architecture that integrates ML with CEP, and which permits the definition of event patterns for the real-time detection of not only specific IoT security attacks, but also novel attacks that have not previously been defined. Our current concern, and the main objective of this paper, is to ensure that the architecture is not necessarily linked to specific vendor technologies and that it can be implemented with other vendor technologies while maintaining its correct functionality. We also set out to evaluate and compare the performance and benefits of alternative implementations. This is why the proposed architecture has been implemented by using technologies from different vendors: firstly, the Mule Enterprise Service Bus (ESB) together with the Esper CEP engine; and secondly, the WSO2 ESB with the Siddhi CEP engine. Both implementations have been tested in terms of performance and stress, and they are compared and discussed in this paper. The results obtained demonstrate that both implementations are suitable and effective, but also that there are notable differences between them: the Mule-based architecture is faster when the architecture makes use of two message broker topics and compares different types of events, while the WSO2-based one is faster when there is a single topic and one event type, and the system has a heavy workload.

J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 147-153
Author(s):  
Paula Morella ◽  
María Pilar Lambán ◽  
Jesús Antonio Royo ◽  
Juan Carlos Sánchez

Among the new trends in technology that have emerged through the Industry 4.0, Cyber Physical Systems (CPS) and Internet of Things (IoT) are crucial for the real-time data acquisition. This data acquisition, together with its transformation in valuable information, are indispensable for the development of real-time indicators. Moreover, real-time indicators provide companies with a competitive advantage over the competition since they enhance the calculus and speed up the decision-making and failure detection. Our research highlights the advantages of real-time data acquisition for supply chains, developing indicators that would be impossible to achieve with traditional systems, improving the accuracy of the existing ones and enhancing the real-time decision-making. Moreover, it brings out the importance of integrating technologies 4.0 in industry, in this case, CPS and IoT, and establishes the main points for a future research agenda of this topic.


Author(s):  
Dmitry Namiot ◽  
Manfred Sneps-Sneppe

This chapter describes proposals for organizing university programs on the internet of things (IoT) and cyber-physical systems. The final goal is to provide a structure for a basic educational course for the internet of things and related areas. This base (template) could be used both for direct training and for building other courses, including those that are more deeply specialized in selected areas. For related areas, the authors see, for example, machine-to-machine communications and data-driven cities (smart cities) development. Obviously, the internet of things skills are in high demand nowadays, and, of course, IoT models, architectures, as well as appropriate data proceedings elements should be presented in the university courses. The purpose of the described educational course is to cover information and communication technologies used in the internet of things systems and related areas. Also, the authors discuss big data and AI issues for IoT courses and highlight the importance of data engineering.


Author(s):  
Abel Gómez ◽  
Markel Iglesias-Urkia ◽  
Lorea Belategi ◽  
Xabier Mendialdua ◽  
Jordi Cabot

AbstractIn the Internet-of-Things (IoT) vision, everyday objects evolve into cyber-physical systems. The massive use and deployment of these systems has given place to the Industry 4.0 or Industrial IoT (IIoT). Due to its scalability requirements, IIoT architectures are typically distributed and asynchronous. In this scenario, one of the most widely used paradigms is publish/subscribe, where messages are sent and received based on a set of categories or topics. However, these architectures face interoperability challenges. Consistency in message categories and structure is the key to avoid potential losses of information. Ensuring this consistency requires complex data processing logic both on the publisher and the subscriber sides. In this paper, we present our proposal relying on AsyncAPI to automate the design and implementation of these asynchronous architectures using model-driven techniques for the generation of (part of) message-driven infrastructures. Our proposal offers two different ways of designing the architectures: either graphically, by modeling and annotating the messages that are sent among the different IoT devices, or textually, by implementing an editor compliant with the AsyncAPI specification. We have evaluated our proposal by conducting a set of experiments with 25 subjects with different expertise and background. The experiments show that one-third of the subjects were able to design and implement a working architecture in less than an hour without previous knowledge of our proposal, and an additional one-third estimated that they would only need less than two hours in total.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Hanjin Kim ◽  
Heonyeop Shin ◽  
Hyeong-su Kim ◽  
Won-Tae Kim

The evolution of virtual reality technology allows users to immerse themselves into virtual environments, providing a new experience that is impossible in the real world. The appearance of cyber-physical systems and the Internet of things makes humans to understand and control the real world in detail. The integration of virtual reality into cyber-physical systems and the Internet of things may induce innovative education services in the near future. In this paper, we propose a novel, a virtual reality-based cyber-physical education system for efficient education in a virtual reality on a mobile platform, called VR-CPES. VR-CPES can integrate the real world into virtual reality using cyber-physical systems technology, especially using digital twin. We extract essential service requirements of VR-CPES in terms of delay time in the virtual reality service layer. In order to satisfy the requirements of the network layer, we design a new, real-time network technology interworking software, defined as network and time-sensitive network. A gateway function for the interworking is developed to make protocol level transparency. In addition, a path selection algorithm is proposed to make flexible flow between physical things and cyber things. Finally, a simulation study will be conducted to validate the functionalities and performance in terms of packet loss and delay as defined in the requirements.


2021 ◽  
Vol 27 (7) ◽  
pp. 734-754
Author(s):  
Manel Mena ◽  
Javier Criado ◽  
Luis Iribarne ◽  
Antonio Corral

Cyber-Physical Systems (CPS) and Internet of Things (IoT) devices are handled by numerous different protocols. The management and connection to those devices tend to create usability and integrability issues. This brings about the need for a solution capable of facilitating the communication between different platforms and devices. The Web of Things (WoT) describes interfaces and interaction patterns among things, thereby abstracting itself from the underlying protocols used to manage those things and their implementation strategies. This paper describes the concept of Digital Dice, an abstraction of IoT devices and CPS capable of leveraging the advantages of microservices architectures and inspired by the concept of Digital Twins. A Digital Dice is a servient system of the WoT domain that represents a device by the features of the device, hence different WoT description models result in different microservices related to the particular thing. The paper explores the definition of Digital Dices and the conversion between WoT Thing Description Models and Digital Dices and the architecture that sustains the system.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1935 ◽  
Author(s):  
Shancang Li ◽  
Houbing Song ◽  
Muddesar Iqbal

With the exponential growth of the Internet of Things (IoT) and cyber-physical systems (CPS), a wide range of IoT applications have been developed and deployed in recent years. To match the heterogeneous application requirements in IoT and CPS systems, many resource-constrained IoT devices are deployed, in which privacy and security have emerged as difficult challenges because the devices have not been designed to have effective security features.


2017 ◽  
Vol 12 (5) ◽  
pp. 1073-1080
Author(s):  
Hideyuki Shintani ◽  
◽  
Tomomi Aoyama ◽  
Ichiro Koshijima

In order to operate the Internet of Things (IoT) or Cyber Physical Systems (CPS) in the real world, the system needs to be structured to have people in the real world incorporated as a part of its process: Human-in-the-Loop CPS (HITLCPS). With people in the real world incorporated as a part of its process, the system must have a secure structure to be able to continue operating normally. With sensors, actuators and other devices connected in a network, it becomes vulnerable to cyberattacks; hence, its framework must be resilient and secure in order to ensure its safety in the face of any disturbances. In this paper, we describe a safety-based secure system structure, using a STAMP model and a covariance structure.


Sign in / Sign up

Export Citation Format

Share Document