scholarly journals Context-based sentiment analysis on customer reviews using machine learning linear models

2021 ◽  
Vol 7 ◽  
pp. e813
Author(s):  
Anandan Chinnalagu ◽  
Ashok Kumar Durairaj

Customer satisfaction and their positive sentiments are some of the various goals for successful companies. However, analyzing customer reviews to predict accurate sentiments have been proven to be challenging and time-consuming due to high volumes of collected data from various sources. Several researchers approach this with algorithms, methods, and models. These include machine learning and deep learning (DL) methods, unigram and skip-gram based algorithms, as well as the Artificial Neural Network (ANN) and bag-of-word (BOW) regression model. Studies and research have revealed incoherence in polarity, model overfitting and performance issues, as well as high cost in data processing. This experiment was conducted to solve these revealing issues, by building a high performance yet cost-effective model for predicting accurate sentiments from large datasets containing customer reviews. This model uses the fastText library from Facebook’s AI research (FAIR) Lab, as well as the traditional Linear Support Vector Machine (LSVM) to classify text and word embedding. Comparisons of this model were also done with the author’s a custom multi-layer Sentiment Analysis (SA) Bi-directional Long Short-Term Memory (SA-BLSTM) model. The proposed fastText model, based on results, obtains a higher accuracy of 90.71% as well as 20% in performance compared to LSVM and SA-BLSTM models.

2021 ◽  
Vol 11 (10) ◽  
pp. 4443
Author(s):  
Rokas Štrimaitis ◽  
Pavel Stefanovič ◽  
Simona Ramanauskaitė ◽  
Asta Slotkienė

Financial area analysis is not limited to enterprise performance analysis. It is worth analyzing as wide an area as possible to obtain the full impression of a specific enterprise. News website content is a datum source that expresses the public’s opinion on enterprise operations, status, etc. Therefore, it is worth analyzing the news portal article text. Sentiment analysis in English texts and financial area texts exist, and are accurate, the complexity of Lithuanian language is mostly concentrated on sentiment analysis of comment texts, and does not provide high accuracy. Therefore in this paper, the supervised machine learning model was implemented to assign sentiment analysis on financial context news, gathered from Lithuanian language websites. The analysis was made using three commonly used classification algorithms in the field of sentiment analysis. The hyperparameters optimization using the grid search was performed to discover the best parameters of each classifier. All experimental investigations were made using the newly collected datasets from four Lithuanian news websites. The results of the applied machine learning algorithms show that the highest accuracy is obtained using a non-balanced dataset, via the multinomial Naive Bayes algorithm (71.1%). The other algorithm accuracies were slightly lower: a long short-term memory (71%), and a support vector machine (70.4%).


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 374 ◽  
Author(s):  
Sudhanshu Kumar ◽  
Monika Gahalawat ◽  
Partha Pratim Roy ◽  
Debi Prosad Dogra ◽  
Byung-Gyu Kim

Sentiment analysis is a rapidly growing field of research due to the explosive growth in digital information. In the modern world of artificial intelligence, sentiment analysis is one of the essential tools to extract emotion information from massive data. Sentiment analysis is applied to a variety of user data from customer reviews to social network posts. To the best of our knowledge, there is less work on sentiment analysis based on the categorization of users by demographics. Demographics play an important role in deciding the marketing strategies for different products. In this study, we explore the impact of age and gender in sentiment analysis, as this can help e-commerce retailers to market their products based on specific demographics. The dataset is created by collecting reviews on books from Facebook users by asking them to answer a questionnaire containing questions about their preferences in books, along with their age groups and gender information. Next, the paper analyzes the segmented data for sentiments based on each age group and gender. Finally, sentiment analysis is done using different Machine Learning (ML) approaches including maximum entropy, support vector machine, convolutional neural network, and long short term memory to study the impact of age and gender on user reviews. Experiments have been conducted to identify new insights into the effect of age and gender for sentiment analysis.


Author(s):  
Dimple Chehal ◽  
Parul Gupta ◽  
Payal Gulati

Sentiment analysis of product reviews on e-commerce platforms aids in determining the preferences of customers. Aspect-based sentiment analysis (ABSA) assists in identifying the contributing aspects and their corresponding polarity, thereby allowing for a more detailed analysis of the customer’s inclination toward product aspects. This analysis helps in the transition from the traditional rating-based recommendation process to an improved aspect-based process. To automate ABSA, a labelled dataset is required to train a supervised machine learning model. As the availability of such dataset is limited due to the involvement of human efforts, an annotated dataset has been provided here for performing ABSA on customer reviews of mobile phones. The dataset comprising of product reviews of Apple-iPhone11 has been manually annotated with predefined aspect categories and aspect sentiments. The dataset’s accuracy has been validated using state-of-the-art machine learning techniques such as Naïve Bayes, Support Vector Machine, Logistic Regression, Random Forest, K-Nearest Neighbor and Multi Layer Perceptron, a sequential model built with Keras API. The MLP model built through Keras Sequential API for classifying review text into aspect categories produced the most accurate result with 67.45 percent accuracy. K- nearest neighbor performed the worst with only 49.92 percent accuracy. The Support Vector Machine had the highest accuracy for classifying review text into aspect sentiments with an accuracy of 79.46 percent. The model built with Keras API had the lowest 76.30 percent accuracy. The contribution is beneficial as a benchmark dataset for ABSA of mobile phone reviews.


Computers ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 4 ◽  
Author(s):  
Jurgita Kapočiūtė-Dzikienė ◽  
Robertas Damaševičius ◽  
Marcin Woźniak

We describe the sentiment analysis experiments that were performed on the Lithuanian Internet comment dataset using traditional machine learning (Naïve Bayes Multinomial—NBM and Support Vector Machine—SVM) and deep learning (Long Short-Term Memory—LSTM and Convolutional Neural Network—CNN) approaches. The traditional machine learning techniques were used with the features based on the lexical, morphological, and character information. The deep learning approaches were applied on the top of two types of word embeddings (Vord2Vec continuous bag-of-words with negative sampling and FastText). Both traditional and deep learning approaches had to solve the positive/negative/neutral sentiment classification task on the balanced and full dataset versions. The best deep learning results (reaching 0.706 of accuracy) were achieved on the full dataset with CNN applied on top of the FastText embeddings, replaced emoticons, and eliminated diacritics. The traditional machine learning approaches demonstrated the best performance (0.735 of accuracy) on the full dataset with the NBM method, replaced emoticons, restored diacritics, and lemma unigrams as features. Although traditional machine learning approaches were superior when compared to the deep learning methods; deep learning demonstrated good results when applied on the small datasets.


2018 ◽  
Vol 14 (2) ◽  
pp. 77-86 ◽  
Author(s):  
Vinay Kumar Jain ◽  
Shishir Kumar ◽  
Prabhat Mahanti

Deep learning has become popular in all aspect related to human judgments. Most machine learning techniques work well which includes text classification, text sequence learning, sentiment analysis, question-answer engine, etc. This paper has been focused on two objectives, firstly is to study the applicability of deep neural networks strategies for extracting sentiment present in social media data and customer reviews with effective training solutions. The second objective is to design deep networks that can be trained with these weakly supervised strategies in order to predict meaningful inferences. This paper presents the concept and steps of using deep learning for extraction sentiments from customer reviews. The extraction pulls out the features from the customer reviews using deep learning popular methods including Convolution neural networks (CNN) and Long Short-Term Memory (LSTM) architectures. The comparison of the results with tradition text classification method such as Naive Bayes(NB) and Support Vector Machine(SVM) using two data sets IMDB reviews and Amazon customer reviews have been presented. This work mainly focused on investigating the merit of using deep models for sentiment analysis in customer reviews.


2020 ◽  
pp. 1-11
Author(s):  
Justyna Miazga ◽  
Tomasz Hachaj

In this paper, we compare the following machine learning methods as classifiers for sentiment analysis: k – nearest neighbours (kNN), artificial neural network (ANN), support vector machine (SVM), random forest. We used a dataset containing 5,000 movie reviews in which 2,500 were marked as positive and 2,500 as negative. We chose 5,189 words which have an influence on sentence sentiment. The dataset was prepared using a term document matrix (TDM) and classical multidimensional scaling (MDS). This is the first time that TDM and MDS have been used to choose the characteristics of text in sentiment analysis. In this case, we decided to examine different indicators of the specific classifier, such as kernel type for SVM and neighbour count in kNN. All calculations were performed in the R language, in the program R Studio v 3.5.2. Our work can be reproduced because all of our data sets and source code are public.


2021 ◽  
Vol 9 ◽  
pp. 152-158
Author(s):  
Shubha Singh ◽  
Sreedevi Gutta ◽  
Ahmad Hadaegh

The Trend of stock price prediction is becoming more popular than ever. Share market is difficult to predict due to its volatile nature. There are no rules to follow to predict what will happen with the stock in the future. To predict accurately is a huge challenge since the market trend always keep changing depending on many factors. The objective is to apply machine learning techniques to predict stocks and maximize the profit. In this work, we have shown that with the help of artificial intelligence and machine learning, the process of prediction can be improved. While doing the literature review, we realized that the most effective machine learning tool for this research include: Artificial Neural Network (ANN), Support Vector Machine (SVM), and Genetic Algorithms (GA). All categories have common and unique findings and limitations. We collected data for about 10 years and used Long Short-Term Memory (LSTM) Neural Network-based machine learning models to analyze and predict the stock price. The Recurrent Neural Network (RNN) is useful to preserve the time-series features for improving profits. The financial data High and Close are used as input for the model.


2022 ◽  
pp. 1-14
Author(s):  
Salem Al-Gharbi ◽  
Abdulaziz Al-Majed ◽  
Salaheldin Elkatatny ◽  
Abdulazeez Abdulraheem

Abstract Due to high demand for energy, oil and gas companies started to drill wells in remote environments conducting unconventional operations. In order to maintain safe, fast and more cost-effective operations, utilizing machine learning (ML) technologies has become a must. The harsh environments of drilling sites and the transmission setups, are negatively affecting the drilling data, leading to less than acceptable ML results. For that reason, big portion of ML development projects were actually spent on improving the data by data-quality experts. The objective of this paper is to evaluate the effectiveness of ML on improving the real-time drilling-data-quality and compare it to a human expert knowledge. To achieve that, two large real-time drilling datasets were used; one dataset was used to train three different ML techniques: artificial neural network (ANN), support vector machine (SVM) and decision tree (DT), the second dataset was used to evaluate it. The ML results were compared with the results of a real- time drilling data quality expert. Despite the complexity of ANN and good results in general, it achieved a relative root mean square error (RRMSE) of 2.83%, which was lower than DT and SVM technologies that achieved RRMSE of 0.35% and 0.48% respectively. The uniqueness of this work is in developing ML that simulates the improvement of drilling-data- quality by an expert. This research provides a guide for improving the quality of real-time drilling data.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


2019 ◽  
Vol 20 (5) ◽  
pp. 488-500 ◽  
Author(s):  
Yan Hu ◽  
Yi Lu ◽  
Shuo Wang ◽  
Mengying Zhang ◽  
Xiaosheng Qu ◽  
...  

Background: Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world&#039;s highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. </P><P> Objective: In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. </P><P> Results: Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. </P><P> Conclusion: This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.


Sign in / Sign up

Export Citation Format

Share Document