scholarly journals Competing endogenous RNA network identifies mRNA biomarkers for overall survival of lung adenocarcinoma: two novel on-line precision medicine predictive tools

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11412
Author(s):  
Jinsong Lin ◽  
Shubiao Lu ◽  
Zhijian Jiang ◽  
Chongjing Hu ◽  
Zhiqiao Zhang

Background Individual mortality risk predicted curve at the individual level can provide valuable information for directing individual treatment decision. The present study attempted to explore potential post-transcriptional biological regulatory mechanism related with overall survival of lung adenocarcinoma (LUAD) patients through competitive endogenous RNA (ceRNA) network and develop two precision medicine predictive tools for predicting the individual mortality risk curves for overall survival of LUAD patients. Methods Multivariable Cox regression analyses were performed to explore the potential prognostic indicators, which were used to construct a prognostic model for overall survival of LUAD patients. Time-dependent receiver operating characteristic (ROC) curves were used to assess the predictive performance of prognostic model. Results There were 494 LUAD patients in model cohort and 233 LUAD patients in validation cohort. Differentially expressed mRNAs, miRNAs, and lncRNAs were identified between LUAD tissues and normal tissues. A ceRNA regulatory network was constructed on previous differentially expressed mRNAs, miRNAs, and lncRNAs. Fourteen mRNA biomarkers were identified as independent risk factors by multivariate Cox regression and used to develop a prognostic model for overall survival of LUAD patients. The C-indexes of prognostic model in model group were 0.786 (95% CI [0.744–0.828]), 0.736 (95% CI [0.694–0.778]) and 0.766 (95% CI [0.724–0.808]) for one year, two year and three year overall survival respectively. Two precision medicine predicted tools were developed for predicting individual mortality risk curves for LUAD patients. Conclusion The current study explored potential post-transcriptional biological regulatory mechanism and prognostic biomarkers for overall survival of LUAD patients. Two on-line precision medicine predictive tools were helpful to predict the individual mortality risk predicted curves for overall survival of LUAD patients. Smart Cancer Survival Predictive System could be used at https://zhangzhiqiao2.shinyapps.io/Smart_cancer_predictive_system_9_LUAD_E1002/.

2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Zhiqiao Zhang ◽  
Tingshan He ◽  
Liwen Huang ◽  
Yanling Ouyang ◽  
Jing Li ◽  
...  

Abstract Background The current study aimed to construct competing endogenous RNA (ceRNA) regulation network and develop two precision medicine predictive tools for colorectal cancer (CRC). Methods Differentially expressed (DE) analyses were performed between CRC tissues and normal tissues. A ceRNA regulation network was constructed based on DElncRNAs, DEmiRNAs, and DEmRNAs. Results Fifteen mRNAs (ENDOU, MFN2, FASLG, SHOC2, VEGFA, ZFPM2, HOXC6, KLK10, DDIT4, LPGAT1, BEX4, DENND5B, PHF20L1, HSP90B1, and PSPC1) were identified as prognostic biomarkers for CRC by multivariate Cox regression. Then a Fifteen-mRNA signature was developed to predict overall survival for CRC patients. Concordance indexes were 0.817, 0.838, and 0.825 for 1-, 2- and 3-year overall survival. Patients with high risk scores have worse OS compared with patients with low risk scores. Conclusion The current study provided deeper understanding of prognosis-related ceRNA regulatory network for CRC. Two precision medicine predictive tools named Smart Cancer Survival Predictive System and Gene Survival Analysis Screen System were constructed for CRC. These two precision medicine predictive tools can provide valuable precious individual mortality risk prediction before surgery and improve the individualized treatment decision-making.


2021 ◽  
Vol 20 ◽  
pp. 153303382110414
Author(s):  
Xiaoyong Li ◽  
Jiaqong Lin ◽  
Yuguo pan ◽  
Peng Cui ◽  
Jintang Xia

Background: Liver progenitor cells (LPCs) play significant roles in the development and progression of hepatocellular carcinoma (HCC). However, no studies on the value of LPC-related genes for evaluating HCC prognosis exist. We developed a gene signature of LPC-related genes for prognostication in HCC. Methods: To identify LPC-related genes, we analyzed mRNA expression arrays from a dataset (GSE57812 & GSE 37071) containing LPCs, mature hepatocytes, and embryonic stem cell samples. HCC RNA-Seq data from The Cancer Genome Atlas (TCGA) were used to explore the differentially expressed genes (DEGs) related to prognosis through DEG analysis and univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed to construct the LPC-related gene prognostic model in the TCGA training dataset. This model was validated in the TCGA testing set and an external dataset (International Cancer Genome Consortium [ICGC] dataset). Finally, we investigated the relationship between this prognostic model with tumor-node-metastasis stage, tumor grade, and vascular invasion of HCC. Results: Overall, 1770 genes were identified as LPC-related genes, of which 92 genes were identified as DEGs in HCC tissues compared with normal tissues. Furthermore, we randomly assigned patients from the TCGA dataset to the training and testing cohorts. Twenty-six DEGs correlated with overall survival (OS) in the univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed in the TCGA training set, and a 3-gene signature was constructed to stratify patients into 2 risk groups: high-risk and low-risk. Patients in the high-risk group had significantly lower OS than those in the low-risk group. Receiver operating characteristic curve analysis confirmed the signature's predictive capacity. Moreover, the risk score was confirmed to be an independent predictor for patients with HCC. Conclusion: We demonstrated that the LPC-related gene signature can be used for prognostication in HCC. Thus, targeting LPCs may serve as a therapeutic alternative for HCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wenxing Qin ◽  
Feng Qi ◽  
Jia Li ◽  
Ping Li ◽  
Yuan-Sheng Zang

The objective of this study was to construct a competitive endogenous RNA (ceRNA) regulatory network using differentially expressed long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs in patients with triple-negative breast cancer (TNBC) and to construct a prognostic model for predicting overall survival (OS) in patients with TNBC. Differentially expressed lncRNAs, miRNAs, and mRNAs in TNBC patients from the TCGA and Metabric databases were examined. A prognostic model based on prognostic scores (PSs) was established for predicting OS in TNBC patients, and the performance of the model was assessed by a recipient that operated on a distinctive curve. A total of 874 differentially expressed RNAs (DERs) were screened, among which 6 lncRNAs, 295 miRNAs and 573 mRNAs were utilized to construct targeted and coexpression ceRNA regulatory networks. Eight differentially expressed genes (DEGs) associated with survival prognosis, DBX2, MYH7, TARDBP, POU4F1, ABCB11, LHFPL5, TRHDE and TIMP4, were identified by multivariate Cox regression and then used to establish a prognostic model. Our study shows that the ceRNA network has a critical role in maintaining the aggressiveness of TNBC and provides comprehensive molecular-level insight for predicting individual mortality hazards for TNBC patients. Our data suggest that these prognostic mRNAs from the ceRNA network are promising therapeutic targets for clinical intervention.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tingshan He ◽  
Liwen Huang ◽  
Jing Li ◽  
Peng Wang ◽  
Zhiqiao Zhang

Background: The tumour immune microenvironment plays an important role in the biological mechanisms of tumorigenesis and progression. Artificial intelligence medicine studies based on big data and advanced algorithms are helpful for improving the accuracy of prediction models of tumour prognosis. The current research aims to explore potential prognostic immune biomarkers and develop a predictive model for the overall survival of ovarian cancer (OC) based on artificial intelligence algorithms.Methods: Differential expression analyses were performed between normal tissues and tumour tissues. Potential prognostic biomarkers were identified using univariate Cox regression. An immune regulatory network was constructed of prognostic immune genes and their highly related transcription factors. Multivariate Cox regression was used to identify potential independent prognostic immune factors and develop a prognostic model for ovarian cancer patients. Three artificial intelligence algorithms, random survival forest, multitask logistic regression, and Cox survival regression, were used to develop a novel artificial intelligence survival prediction system.Results: The current study identified 1,307 differentially expressed genes and 337 differentially expressed immune genes between tumour samples and normal samples. Further univariate Cox regression identified 84 prognostic immune gene biomarkers for ovarian cancer patients in the model dataset (GSE32062 dataset and GSE53963 dataset). An immune regulatory network was constructed involving 63 immune genes and 5 transcription factors. Fourteen immune genes (PSMB9, FOXJ1, IFT57, MAL, ANXA4, CTSH, SCRN1, MIF, LTBR, CTSD, KIFAP3, PSMB8, HSPA5, and LTN1) were recognised as independent risk factors by multivariate Cox analyses. Kaplan-Meier survival curves showed that these 14 prognostic immune genes were closely related to the prognosis of ovarian cancer patients. A prognostic nomogram was developed by using these 14 prognostic immune genes. The concordance indexes were 0.760, 0.733, and 0.765 for 1-, 3-, and 5-year overall survival, respectively. This prognostic model could differentiate high-risk patients with poor overall survival from low-risk patients. According to three artificial intelligence algorithms, the current study developed an artificial intelligence survival predictive system that could provide three individual mortality risk curves for ovarian cancer.Conclusion: In conclusion, the current study identified 1,307 differentially expressed genes and 337 differentially expressed immune genes in ovarian cancer patients. Multivariate Cox analyses identified fourteen prognostic immune biomarkers for ovarian cancer. The current study constructed an immune regulatory network involving 63 immune genes and 5 transcription factors, revealing potential regulatory associations among immune genes and transcription factors. The current study developed a prognostic model to predict the prognosis of ovarian cancer patients. The current study further developed two artificial intelligence predictive tools for ovarian cancer, which are available at https://zhangzhiqiao8.shinyapps.io/Smart_Cancer_Survival_Predictive_System_17_OC_F1001/ and https://zhangzhiqiao8.shinyapps.io/Gene_Survival_Subgroup_Analysis_17_OC_F1001/. An artificial intelligence survival predictive system could help improve individualised treatment decision-making.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yi Wang ◽  
Yinhao Chen ◽  
Bingye Zhu ◽  
Limin Ma ◽  
Qianwei Xing

Background: This study was designed to establish a sensitive prognostic model based on apoptosis-related genes to predict overall survival (OS) in patients with clear cell renal cell carcinoma (ccRCC).Methods: Obtaining the expression of apoptosis-related genes and associated clinical parameters from online datasets (The Cancer Genome Atlas, TCGA), their biological function analyses were performed through differently expressed genes. By means of LASSO, unadjusted and adjusted Cox regression analyses, this predictive signature was constructed and validated by internal and external databases (both TCGA and ArrayExpress).Results: A total of nine apoptosis-related genes (SLC27A2, TNFAIP2, IFI44, CSF2, IL4, MDK, DOCK8, WNT5A, APP) were ultimately screened as associated hub genes and utilized to construct a prognosis model. Then our constructed riskScore model significantly passed the validation in both the internal and external datasets of OS (all p < 0.05) and verified their expressions by qRT-PCR. Moreover, we conducted the Receiver Operating Characteristic (ROC), finding the area under the ROC curves (AUCs) were all above 0.70 which indicated that riskScore was a stable independent prognostic factor (p < 0.05). Furthermore, prognostic nomograms were established to figure out the relationship between 1-, 3- and 5-year OS and individual parameters for ccRCC patients. Additionally, survival analyses indicated that our riskScore worked well in predicting OS in subgroups of age, gender, grade, stage, T, M, N0, White (all p < 0.05), except for African, Asian and N1 (p > 0.05). We also explored its association with immune infiltration and applied cMap database to seek out highly correlated small molecule drugs.Conclusion: Our study successfully constructed a prognostic model containing nine hub apoptosis-related genes for ccRCC, helping clinicians predict patients’ OS and making the prognostic assessment more standardized. Future prospective studies are required to validate our findings.


2021 ◽  
Author(s):  
Liusheng Wu ◽  
Xiaoqiang Li ◽  
Jixian Liu ◽  
Da Wu ◽  
Dingwang Wu ◽  
...  

Abstract Objective: Autophagy-related LncRNA genes play a vital role in the development of esophageal adenocarcinoma.Our study try to construct a prognostic model of autophagy-related LncRNA esophageal adenocarcinoma, and use this model to calculate patients with esophageal adenocarcinoma. The survival risk value of esophageal adenocarcinoma can be used to evaluate its survival prognosis. At the same time, to explore the sites of potential targeted therapy genes to provide valuable guidance for the clinical diagnosis and treatment of esophageal adenocarcinoma.Methods: Our study have downloaded 261 samples of LncRNA-related transcription and clinical data of 87 patients with esophageal adenocarcinoma from the TCGA database, and 307 autophagy-related gene data from www.autuphagy.com. We applied R software (Version 4.0.2) for data analysis, merged the transcriptome LncRNA genes, autophagy-related genes and clinical data, and screened autophagy LncRNA genes related to the prognosis of esophageal adenocarcinoma. We also performed KEGG and GO enrichment analysis and GSEA enrichment analysis in these LncRNA genes to analysis the risk characteristics and bioinformatics functions of signal transduction pathways. Univariate and multivariate Cox regression analysis were used to determine the correlation between autophagy-related LncRNA and independent risk factors. The establishment of ROC curve facilitates the evaluation of the feasibility of predicting prognostic models, and further studies the correlation between autophagy-related LncRNA and the clinical characteristics of patients with esophageal adenocarcinoma. Finally, we also used survival analysis, risk analysis and independent prognostic analysis to verify the prognosis model of esophageal adenocarcinoma.Results: We screened and identified 22 autophagic LncRNA genes that are highly correlated with the overall survival (OS) of patients with esophageal adenocarcinoma. The area under the ROC curve(AUC=0.941)and the calibration curve have a good lineup, which has statistical analysis value. In addition, univariate and multivariate Cox regression analysis showed that the autophagy LncRNA feature of this esophageal adenocarcinoma is an independent predictor of esophageal adenocarcinoma.Conclusion: These LncRNA screened and identified may participate in the regulation of cellular autophagy pathways, and at the same time affect the tumor development and prognosis of patients with esophageal adenocarcinoma. These results indicate that risk signature and nomogram are important indicators related to the prognosis of patients with esophageal adenocarcinoma.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yang Li ◽  
Rongrong Sun ◽  
Rui Li ◽  
Yonggang Chen ◽  
He Du

Evidence is increasingly indicating that circular RNAs (circRNAs) are closely involved in tumorigenesis and cancer progression. However, the function and application of circRNAs in lung adenocarcinoma (LUAD) are still unknown. In this study, we constructed a circRNA-associated competitive endogenous RNA (ceRNA) network to investigate the regulatory mechanism of LUAD procession and further constructed a prognostic signature to predict overall survival for LUAD patients. Differentially expressed circRNAs (DEcircRNAs), differentially expressed miRNAs (DEmiRNAs), and differentially expressed mRNAs (DEmRNAs) were selected to construct the ceRNA network. Based on the TargetScan prediction tool and Pearson correlation coefficient, we constructed a circRNA-associated ceRNA network including 11 DEcircRNAs, 8 DEmiRNAs, and 49 DEmRNAs. GO and KEGG enrichment indicated that the ceRNA network might be involved in the regulation of GTPase activity and endothelial cell differentiation. After removing the discrete points, a PPI network containing 12 DEmRNAs was constructed. Univariate Cox regression analysis showed that three DEmRNAs were significantly associated with overall survival. Therefore, we constructed a three-gene prognostic signature for LUAD patients using the LASSO method in the TCGA-LUAD training cohort. By applying the signature, patients could be categorized into the high-risk or low-risk subgroups with significant survival differences (HR: 1.62, 95% CI: 1.12-2.35, log-rank p = 0.009 ). The prognostic performance was confirmed in an independent GEO cohort (GSE42127, HR: 2.59, 95% CI: 1.32-5.10, log-rank p = 0.004 ). Multivariate Cox regression analysis proved that the three-gene signature was an independent prognostic factor. Combining the three-gene signature with clinical characters, a nomogram was constructed. The primary and external verification C -indexes were 0.717 and 0.716, respectively. The calibration curves for the probability of 3- and 5-year OS showed significant agreement between nomogram predictions and actual observations. Our findings provided a deeper understanding of the circRNA-associated ceRNA regulatory mechanism in LUAD pathogenesis and further constructed a useful prognostic signature to guide personalized treatment of LUAD patients.


2019 ◽  
Vol 50 (3) ◽  
pp. 261-269
Author(s):  
Jieyun Zhang ◽  
Yue Yang ◽  
Xiaojian Fu ◽  
Weijian Guo

Abstract Purpose Nomograms are intuitive tools for individualized cancer prognosis. We sought to develop a clinical nomogram for prediction of overall survival and cancer-specific survival for patients with colorectal cancer. Methods Patients with colorectal cancer diagnosed between 1988 and 2006 and those who underwent surgery were retrieved from the Surveillance, Epidemiology, and End Results database and randomly divided into the training (n = 119 797) and validation (n = 119 797) cohorts. Log-rank and multivariate Cox regression analyses were used in our analysis. To find out death from other cancer causes and non-cancer causes, a competing-risks model was used, based on which we integrated these significant prognostic factors into nomograms and subjected the nomograms to bootstrap internal validation and to external validation. Results The 1-, 3-, 5- and 10-year probabilities of overall survival in patients of colorectal cancer after surgery intervention were 83.04, 65.54, 54.79 and 38.62%, respectively. The 1-, 3-, 5- and 10-year cancer-specific survival was 87.36, 73.44, 66.22 and 59.11%, respectively. Nine independent prognostic factors for overall survival and nine independent prognostic factors for cancer specific survival were included to build the nomograms. Internal and external validation CI indexes of overall survival were 0.722 and 0.721, and those of cancer-specific survival were 0.765 and 0.766, which was satisfactory. Conclusions Nomograms for prediction of overall survival and cancer-specific survival of patients with colorectal cancer. Performance of the model was excellent. This practical prognostic model may help clinicians in decision-making and design of clinical studies.


2021 ◽  
pp. 153537022110535
Author(s):  
Nan Li ◽  
Kai Yu ◽  
Zhong Lin ◽  
Dingyuan Zeng

Uterine corpus endometrial carcinoma (UCEC) is the third most frequent gynecological malignancies in the female reproductive system. Long non-coding RNAs (lncRNAs) are closely involved in tumor progression. This study aimed to develop an immune subtyping system and a prognostic model based on lncRNAs for UCEC. Paired lncRNAs and non-negative matrix factorization were applied to identify immune subtypes. Enrichment analysis was conducted to assess functional pathways, immune-related genes, and cells. Univariate and multivariate Cox regression analysis were performed to analyze the relation between lncRNAs and overall survival (OS). A prognostic model was constructed and optimized by least absolute shrinkage and selection operator (LASSO) and Akaike information criterion (AIC). Two immune subtypes (C1 and C2) and four paired-prognostic lncRNAs closely associated with overall survival were identified. Some immune features, sensitivity of chemotherapy and immunotherapy, and the relation with immune escape showed variations between two subtypes. A nomogram established based on prognostic model and clinical features was effective in OS prediction. The immune subtyping system based on lncRNAs and the four-paired-lncRNA signature was predictive of UCEC prognosis and can facilitate personalized therapies such as immunotherapy or RNA-based therapy for UCEC patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Armita Armina Abedi ◽  
Kirsten Grunnet ◽  
Ib Jarle Christensen ◽  
Signe Regner Michaelsen ◽  
Aida Muhic ◽  
...  

BackgroundGlioblastoma patients administered standard therapies, comprising maximal surgical resection, radiation therapy with concomitant and adjuvant temozolomide, have a variable prognosis with a median overall survival of 15–16 months and a 2-year overall survival of 30%. The aim of this study was to develop a prognostic nomogram for overall survival for glioblastoma patients treated with standard therapy outside clinical trials.MethodsThe study included 680 consecutive, non-selected glioblastoma patients administered standard therapy as primary treatment between the years 2005 and 2016 at Rigshospitalet, Copenhagen, Denmark. The prognostic model was generated employing multivariate Cox regression analysis modeling overall survival.ResultsThe following poor prognostic factors were included in the final prognostic model for overall survival: Age (10-year increase: HR = 1.18, 95% CI: 1.08–1.28, p < 0.001), ECOG performance status (PS) 1 vs. 0 (HR = 1.30, 95% CI: 1.07–1.57, p = 0.007), PS 2 vs. 0 (HR = 2.99, 95% CI: 1.99–4.50, p < 0.001), corticosteroid use (HR = 1.42, 95% CI: 1.18–1.70, p < 0.001), multifocal disease (HR = 1.63, 95% CI: 1.25–2.13, p < 0.001), biopsy vs. resection (HR = 1.35, 95% CI: 1.04–1.72, p = 0.02), un-methylated promoter of the MGMT (O6-methylguanine-DNA methyltransferase) gene (HR = 1.71, 95% CI: 1.42–2.04, p < 0.001). The model was validated internally and had a concordance index of 0.65.ConclusionA nomogram for overall survival was established. This model can be used for risk stratification and treatment planning, as well as improve enrollment criteria for clinical trials.


Sign in / Sign up

Export Citation Format

Share Document