scholarly journals Identification and validation of candidate genes dysregulated in alveolar macrophages of acute respiratory distress syndrome

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12312
Author(s):  
Yong Mao ◽  
Xin Lv ◽  
Wei Xu ◽  
Youguo Ying ◽  
Zonghe Qin ◽  
...  

Background Acute respiratory distress syndrome (ARDS) is a common cause of death in ICU patients and its underlying mechanism remains unclear, which leads to its high mortality rate. This study aimed to identify candidate genes potentially implicating in the pathogenesis of ARDS and provide novel therapeutic targets. Methods Using bioinformatics tools, we searched for differentially expressed genes (DEGs) in an ARDS microarray dataset downloaded from the Gene Expression Omnibus (GEO) database. Afterwards, functional enrichment analysis of GO, KEGG, GSEA and WGCNA were carried out to investigate the potential involvement of these DEGs. Moreover, the Protein–protein interaction (PPI) network was constructed and molecular complexes and hub genes were identified, followed by prognosis analysis of the hub genes. Further, we performed qRT-PCR, Western Blot and flow cytometry analysis to detect candidate genes of CCR2 and FPR3 in macrophage model of LPS-induced ARDS and primary alveolar macrophages(AMs). Macrophage chemotaxis was evaluated using Transwell assay. Results DEGs mainly involved in myeloid leukocyte activation, cell chemotaxis, adenylate cyclase-modulating G protein-coupled receptor signaling pathway and cytokine-cytokine receptor interaction. Basing on the constructed PPI network, we identified five molecular complexes and 10 hub genes potentially participating in the pathogenesis of ARDS. It was observed that candidate genes of CCR2 and FPR3 were significantly over-expressed in primary alveolar macrophages from ARDS patients and macrophgae model of LPS-induced ARDS. Moreover, in vitro transwell assay demonstrated that CCR2 and FPR3 down-regulation, respectively, inhibited LPS-triggered macrophage chemotaxis toward CCL2. Finally, a positive correlation between FPR3 and CCR2 expression was confirmed using pearson correlation analysis and Western Blot assay. Conclusions Our study identified CCR2 and FPR3 as the candidate genes which can promote macrophage chemotaxis through a possible interaction between FPR3 and CCL2/CCR2 axis and provided novel insights into ARDS pathogenesis.

2007 ◽  
Vol 113 (6) ◽  
pp. 279-285 ◽  
Author(s):  
Shang Jyh Kao ◽  
Diana Yu-Wung Yeh ◽  
Hsing I. Chen

FES (fat embolism syndrome) is a clinical problem, and, although ARDS (acute respiratory distress syndrome) has been considered as a serious complication of FES, the pathogenesis of ARDS associated with FES remains unclear. In the present study, we investigated the clinical manifestations, and biochemical and pathophysiological changes, in subjects associated with FES and ARDS, to elucidate the possible mechanisms involved in this disorder. A total of eight patients with FES were studied, and arterial blood pH, PaO2 (arterial partial pressure of O2), PaCO2 (arterial partial pressure of CO2), biochemical and pathophysiological data were obtained. These subjects suffered from crash injuries and developed FES associated with ARDS, and each died within 2 h after admission. In the subjects, chest radiography revealed that the lungs were clear on admission, and pulmonary infiltration was observed within 2 h of admission. Arterial blood pH and PaO2 declined, whereas PaCO2 increased. Plasma PLA2 (phospholipase A2), nitrate/nitrite, methylguanidine, TNF-α (tumour necrosis factor-α), IL-1β (interleukin-1β) and IL-10 (interleukin-10) were significantly elevated. Pathological examinations revealed alveolar oedema and haemorrhage with multiple fat droplet depositions and fibrin thrombi. Fat droplets were also found in the arterioles and/or capillaries in the lung, kidney and brain. Immunohistochemical staining identified iNOS (inducible nitric oxide synthase) in alveolar macrophages. In conclusion, our clinical analysis suggests that PLA2, NO, free radicals and pro-inflammatory cytokines are involved in the pathogenesis of ARDS associated with FES. The major source of NO is the alveolar macrophages.


2020 ◽  
Vol 134 (14) ◽  
pp. 1957-1971 ◽  
Author(s):  
Zhukai Cong ◽  
Dan Li ◽  
Xiangpeng Lv ◽  
Cui Yang ◽  
Qiang Zhang ◽  
...  

Abstract Acute respiratory distress syndrome (ARDS) is a severe condition with high morbidity and mortality and few interventions. The role of sympathetic stress in the pathogenesis of ARDS has attracted recent research attention. Blockade of α-2 or α2A-adrenoceptor (α2A-AR) has been shown to attenuate lung injury induced by lipopolysaccharide (LPS) in rats. However, the mechanism is unclear. We confirmed the role of α2A-AR in ARDS using knockout mice and alveolar macrophages following LPS stimulation to assess the underlying mechanisms. We found that α2A-AR deficiency decreased the permeability of the alveolar capillary barrier in ARDS mice and suppressed lung inflammation by reducing inflammatory cell infiltration and the production of TNF-α, interleukin (IL)-6, and CXCL2/MIP-2. LPS stimulation decreased NF-κB activation in lung tissues of α2A-AR deficient mice and increased norepinephrine concentrations. In vitro, we found that norepinephrine inhibited the production of TNF-α, IL-6, and CXCL2/MIP-2 and promoted the secretion of IL-10 from LPS-stimulated murine alveolar macrophages. Blockade of α2A-AR by a specific antagonist further inhibited the production of TNF-α, IL-6, and IL-10. Furthermore, norepinephrine down-regulated NF-κB activation in stimulated alveolar macrophages. Altogether, these results suggest that α2A-AR deficiency ameliorates lung injury by increasing norepinephrine concentrations in lung tissues and inhibiting the activation of alveolar macrophages.


Lung ◽  
2004 ◽  
Vol 182 (3) ◽  
Author(s):  
Fumiyuki Takahashi ◽  
Kazuhisa Takahashi ◽  
Kazue Shimizu ◽  
Ri Cui ◽  
Norihiro Tada ◽  
...  

2020 ◽  
Vol 40 (9) ◽  
Author(s):  
Lin Liao ◽  
Pinhu Liao

Abstract Background: Acute respiratory distress syndrome (ARDS) is caused by uncontrolled inflammation, and the activation of alveolar macrophages (AM) is involved in pathophysiologic procedures. The present study aimed to identify key AM genes and pathways and try to provide potential targets for prognosis and early intervention in ARDS. Methods: The mRNA expression profile of GSE89953 was obtained from the Gene Expression Omnibus database. The LIMMA package in R software was used to identify differentially expressed genes (DEGs), and the clusterProfiler package was used for functional enrichment and pathway analyses. A protein–protein interaction network of DEGs was constructed to identify hub genes via the STRING database and Cytoscape software. Hub gene expression was validated using differentially expressed proteins (DEPs) obtained from the ProteomeXchange datasets to screen potential biomarkers. Results: A total of 166 DEGs (101 up-regulated and 65 down-regulated) were identified. The up-regulated DEGs were mainly enriched in regulation of the ERK1 and ERK2 cascade, response to interferon-gamma, cell chemotaxis, and migration in biological processes. In the KEGG pathway analysis, up-regulated DEGs were mainly involved in rheumatoid arthritis, cytokine–cytokine receptor interactions, phagosome, and the chemokine signaling pathway. The 12 hub genes identified included GZMA, MPO, PRF1, CXCL8, ELANE, GZMB, SELL, APOE, SPP1, JUN, CD247, and CCL2. Conclusion: SPP1 was consistently differentially expressed in both DEGs and DEPs. SPP1 could be a potential biomarker for ARDS.


Sign in / Sign up

Export Citation Format

Share Document