scholarly journals Assessment of microbiota diversity in dental unit waterline contamination

PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12723
Author(s):  
Yun Dang ◽  
Qian Zhang ◽  
Jing Wang ◽  
Qian Wang ◽  
Meng Han ◽  
...  

Background Dental unit waterlines (DUWLs) provide water for handpieces, air/water syringes, and mouth-rinse water outlets. DUWL contamination can negatively affect the operating environment and public health. Therefore, it is important to elucidate the bacterial concentrations and microbial composition in the DUWLs from different dental specialties. Methods We collected 350 5-mL dental water samples (from high-speed handpieces, air/water syringes, and mouth-rinse water outlets) from 60 dental chair units (DCUs) at a dental hospital to determine the bacterial concentrations by culture methods. Meanwhile, to investigate the diversity and community structure of microbe in the DUWLs, 17 high-quality DNA from 60 250-mL air/water syringe water samples, which were collected from the same 60 DCUs, were analyzed using 16S rDNA high-throughput sequencing. Results The median bacterial concentration was 166 (31.5, 672.5) CFU/mL and the range was 0–3,816,000 CFU/mL. Only 42.6% of the water samples had bacterial concentrations below 100 CFU/mL. The Kruskal–Wallis H-test revealed that the water samples from three dental specialties had significantly different bacterial concentrations (H = 27.441, P < 0.01). High-throughput sequencing results showed significant differences in bacterial community structure between periodontics and the other two dental specialties. In the samples from three dental specialties, 508 OTUs were detected, with 160, 182 and 176 OTUs unique to the periodontics, endodontics and prosthodontics specialties, respectively. Linear discriminant analysis (LDA) effect size (LEfSe) suggested that Hydrocarboniphaga, Zoogloea, Aquabacterium, and Hydrogenophaga were enriched in the periodontics specialty; Acinetobacter, Geothrix, and Desulfovibrio were enriched in the prosthodontics specialty; and Alistipes, Clostridium XIVa, and Serratia were enriched in the endodontics specialty. Seven potentially human-pathogenic genera (Pseudomonas, Acinetobacter, Sphingomonas, Ochrobactrum, Rhizobium, Brevundimonas, and Methylobacterium) with relative abundance exceeding 1% were also detected in the DUWLs. Conclusions The bacterial concentrations and microbial composition were influenced by different dental specialties, so a validated disinfection protocol should be used to control DUWL contamination in different dental specialties.

2021 ◽  
Author(s):  
Yanbo Liu ◽  
Mengxiao Sun ◽  
Pei Hou ◽  
Wenya Wang ◽  
Xiangkun Shen ◽  
...  

Abstract In this study, the pit mud used in manufacturing Taorong-type Baijiu was collected from the upper, middle, lower and bottom layers of pits in Henan Yangshao Liquor Co., LTD. Besides, high-throughput sequencing (HTS) technology was adopted to analyze the microbial community structure of the pit mud. In addition, the volatile compounds in the pit mud were subjected to preliminarily qualitative analysis through headspace-solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The results of HTS demonstrated that there were 5, 3, 5 and 5 dominant bacterial phyla (including 11, 11, 9 and 8 dominant bacterial genera) and 3, 3, 3 and 3 dominant fungal phyla (including 4, 7, 7 and 5 dominant fungal genera) in the pit mud from F-S (upper), G-Z (middle), H-X (lower) and I-D (bottom), respectively. The qualitative analysis results of volatile compounds demonstrated that a total of 78 kinds of volatile compounds were detected in the pit mud, including 46, 45, 39 and 49 kinds in the pit mud from F-S, G-Z, H-X and I-D, respectively. Ester and acid were the two main components in the pit mud. Meanwhile, the correlation between microorganisms and main volatile compounds in the pit mud was analyzed. Moreover, Lentimicrobium, Syner-01 and Blvii28_wastewater-sludge group were found for the first time in the pit mud used for manufacturing Taorong-type Baijiu. The findings of this study could provide a theoretical foundation for improving the quality of pit mud and the flavor of Taorong-type Baijiu.


2020 ◽  
Author(s):  
Chuanbo Zhang ◽  
Chao-Hui Ren ◽  
Yan-Li Wang ◽  
Qi-Qi Wang ◽  
Yun-Sheng Wang ◽  
...  

Abstract Background The fungal communities inhabiting natural Ophiocordyceps sinensis play critical ecological roles in alpine meadow ecosystem, contribute to infect host insect, influence the occurrence of O. sinensis, and are repertoire of potential novel metabolites discovery. However, a comprehensive understanding of fungal communities of O. sinensis remain elusive. Therefore, the present study aimed to unravel fungal communities of natural O. sinensis using combination of high-throughput sequencing and culture-dependent approach. Results A total of 280,519 high-quality sequences, belonging to 5 fungal phyla, 15 classes, 41 orders, 79 families, 112 genera, and 352 putative operational taxonomic units (OTUs) were obtained from natural O. sinensis using high-throughput sequencing. Among of which, 43 genera were identified in external mycelial cortices (EMC), Ophiocordyceps, Sebacinia, Archaeorhizomyces were predominant genera with the abundance of 95.86%, 1.14%, 0.85%, respectively. Total 66 genera were identified from soil microhabitat, Inocybe, Archaeorhizomyces, Unclassified Thelephoraceae, Tomentella, Thelephora, Sebacina, Unclassified Ascomycota, Unclassified Fungi were predominant genera with an average abundance of 53.32%, 8.69%, 8.12%, 8.12%, 7.21%, 4.6%, 3.08% and 3.05%, respectively. The fungal communities in external mycelial cortices (EMC) were significantly distinct from the soil microhabitat (Soil). Meanwhile, seven culture media that benefit for the growth of O. sinensis were used to isolate culturable fungi at 16 °C, resulted in 77 fungal strains isolated for rDNA ITS sequence analysis, belonging to 33 genera, including Ophiocordyceps, Trichoderma, Cytospora, Truncatella, Dactylonectria, Isaria, Cephalosporium, Fusarium, Cosmospora, Paecilomyces, etc.. Among all culturable fungi, Mortierella and Trichoderma were predominant genera of total isolates. Conclusions The significantly distinction and overlap in fungal community structure between two approaches highlight that integration of approaches would generate more information than either of them. Our finding is the first investigation of fungal community structure of natural O. sinensis by two approachs, provide new insight into O. sinensis associated fungi, and support that microbiota of O. sinensis is an untapped source for novel bioactive metabolites discovery.


Author(s):  
Xiaoyan Wang ◽  
Qing Wang ◽  
Yufeng Yang ◽  
Wenbo Yu

Aquatic invertebrate diversity reflects water quality and the health of aquatic ecosystems and should be monitored as an essential feature of freshwater ecosystems. The resting eggs of aquatic invertebrates in sediments populate the overlying water. The diversity of invertebrates in waters and their resting eggs in sediments in Baiyangdian Lake, Xiongan, North China, were assessed using high-throughput sequencing (HTS) with a pair of 18S rRNA gene adaptor-linked primers. The total of 99 operational taxonomic units (OTUs) derived from 353,755 invertebrate sequences (mostly zooplankton) were revealed by this study. A total of 50 species in the water samples including 20 rotifers, 11 copepods, 1 cladoceran and 18 other species were sorted out. In the sediment 37 species, including 21 rotifers, 3 copepods, 1 cladoceran and 12 other species, were identified. There were 24 species in common between water and corresponding sediments. Invertebrate OTU richness in water samples was higher than that in sediments (p < 0.01), while there was no significant difference in the Shannon-Wiener index. These results suggest that HTS is a promising alternative for efficient biodiversity assessment and monitoring.


2016 ◽  
Vol 82 (9) ◽  
pp. 2632-2643 ◽  
Author(s):  
Hui Sun ◽  
Eeva Terhonen ◽  
Andriy Kovalchuk ◽  
Hanna Tuovila ◽  
Hongxin Chen ◽  
...  

ABSTRACTBoreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P< 0.001) and tree species (P< 0.001). The distance-based linear models analysis showed that environmental variables were significantly correlated with community structure (P< 0.04). The availability of soil nutrients (Ca [P= 0.002], Fe [P= 0.003], and P [P= 0.003]) within the site was an important factor in the fungal community composition. The species richness in wood was significantly lower than in the corresponding soil (P< 0.004). The results of the molecular identification were supplemented by fruiting body surveys. Seven of the genera ofAgaricomycotinaidentified in our surveys were among the top 20 genera observed in pyrosequencing data. Our study is the first, to our knowledge, fungal high-throughput next-generation sequencing study performed on peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands.


2020 ◽  
Vol 58 (2) ◽  
pp. 138-146
Author(s):  
Mary S. Kalamaki ◽  
Apostolos S. Angelidis

Research background. Kefir is a natural probiotic drink traditionally produced by milk fermentation using kefir grains. Kefir grains are composed of a complex population of bacteria and yeasts embedded in a polysaccharide-protein matrix. The geographic origin of kefir grains may largely influence their microbial composition and the associated kefir drink properties. Although the detailed bacterial composition of kefir grains from several geographic regions has been reported, to date, analogous data about the microbiome of Greek kefir are lacking. Hence, the aim of this study is to investigate the structure and the diversity of the bacterial community of Greek kefir grains.Experimental approach. The bacterial community structure and diversity of two different kefir grains from distant geographic regions in Greece were examined via high-throughput sequencing analysis, a culture-independent metagenomic approach, targeting the 16S rRNA V4 variable region, in order to gain a deeper understanding of their bacterial population diversities.Results and conclusions. Firmicutes (a phylum that includes lactic acid bacteria) was strikingly dominant amongst the identified bacterial phyla, with over 99 % of the sequences from both kefir grains classified to this phylum. At the family level, Lactobacillaceae sequences accounted for more than 98 % of the operational taxonomic units (OTUs), followed by Ruminococcaceae, Lahnospiraceae, Bacteroidaceae and other bacterial families of lesser abundance. Α relatively small number of bacterial genera dominated, with Lactobacillus kefiranofaciens being the most abundant in both kefir grains (95.0 % of OTUs in kefir A and 96.3 % of OTUs in kefir B). However, a quite variable subdominant population was also present in both grains, including bacterial genera that have been previously associated with the gastrointestinal tract of humans and animals, some of which are believed to possess probiotic properties (Faecalibacterium spp., Bacteroides spp., Blautia spp.). Differences among the bacterial profiles of the two grains were very small indicating a high homogeneity despite the distant geographic origin.Novelty and scientific contribution. This is the first study to deeply explore and report on the bacterial diversity and species richness of Greek kefir.


mBio ◽  
2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Caitriona M. Guinane ◽  
Amany Tadrous ◽  
Fiona Fouhy ◽  
C. Anthony Ryan ◽  
Eugene M. Dempsey ◽  
...  

ABSTRACT The human appendix has historically been considered a vestige of evolutionary development with an unknown function. While limited data are available on the microbial composition of the appendix, it has been postulated that this organ could serve as a microbial reservoir for repopulating the gastrointestinal tract in times of necessity. We aimed to explore the microbial composition of the human appendix, using high-throughput sequencing of the 16S rRNA gene V4 region. Seven patients, 5 to 25 years of age, presenting with symptoms of acute appendicitis were included in this study. Results showed considerable diversity and interindividual variability among the microbial composition of the appendix samples. In general, however, Firmicutes was the dominant phylum, with the majority of additional sequences being assigned at various levels to Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria. Despite the large diversity in the microbiota found within the appendix, however, a few major families and genera were found to comprise the majority of the sequences present. Interestingly, also, certain taxa not generally associated with the human intestine, including the oral pathogens Gemella, Parvimonas, and Fusobacterium, were identified among the appendix samples. The prevalence of genera such as Fusobacterium could also be linked to the severity of inflammation of the organ. We conclude that the human appendix contains a robust and varied microbiota distinct from the microbiotas in other niches within the human microbiome. The microbial composition of the human appendix is subject to extreme variability and comprises a diversity of biota that may play an important, as-yet-unknown role in human health. IMPORTANCE There are currently limited data available on the microbial composition of the human appendix. It has been suggested, however, that it may serve as a “safe house” for commensal bacteria that can reinoculate the gut at need. The present study is the first comprehensive view of the microbial composition of the appendix as determined by high-throughput sequencing. We have determined that the human appendix contains a wealth of microbes, including members of 15 phyla. Important information regarding the associated bacterial diversity of the appendix which will help determine the role, if any, the appendix microbiota has in human health is presented.


mSphere ◽  
2016 ◽  
Vol 1 (5) ◽  
Author(s):  
Jatinder Singh ◽  
Ryan C. Johnson ◽  
Carey D. Schlett ◽  
Emad M. Elassal ◽  
Katrina B. Crawford ◽  
...  

ABSTRACT While it is evident that nasal colonization with S. aureus increases the likelihood of SSTI, there is a significant lack of information regarding the contribution of extranasal colonization to the overall risk of a subsequent SSTI. Furthermore, the impact of S. aureus colonization on bacterial community composition outside the nasal microbiota is unclear. Thus, this report represents the first investigation that utilized both culture and high-throughput sequencing techniques to analyze microbial dysbiosis at multiple body sites of healthy and diseased/colonized individuals. The results described here may be useful in the design of future methodologies to treat and prevent SSTIs. Skin and soft tissue infections (SSTIs) are common in the general population, with increased prevalence among military trainees. Previous research has revealed numerous nasal microbial signatures that correlate with SSTI development and Staphylococcus aureus colonization. Thus, we hypothesized that the ecology of the inguinal, oropharynx, and perianal regions may also be altered in response to SSTI and/or S. aureus colonization. We collected body site samples from 46 military trainees with purulent abscess (SSTI group) as well as from 66 asymptomatic controls (non-SSTI group). We also collected abscess cavity samples to assess the microbial composition of these infections. Samples were analyzed by culture, and the microbial communities were characterized by high-throughput sequencing. We found that the nasal, inguinal, and perianal regions were similar in microbial composition and significantly differed from the oropharynx. We also observed differences in Anaerococcus and Streptococcus abundance between the SSTI and non-SSTI groups for the nasal and oropharyngeal regions, respectively. Furthermore, we detected community membership differences between the SSTI and non-SSTI groups for the nasal and inguinal sites. Compared to that of the other regions, the microbial compositions of the nares of S. aureus carriers and noncarriers were dramatically different; we noted an inverse correlation between the presence of Corynebacterium and the presence of Staphylococcus in the nares. This correlation was also observed for the inguinal region. Culture analysis revealed elevated methicillin-resistant S. aureus (MRSA) colonization levels for the SSTI group in the nasal and inguinal body sites. Together, these data suggest significant microbial variability in patients with SSTI as well as between S. aureus carriers and noncarriers. IMPORTANCE While it is evident that nasal colonization with S. aureus increases the likelihood of SSTI, there is a significant lack of information regarding the contribution of extranasal colonization to the overall risk of a subsequent SSTI. Furthermore, the impact of S. aureus colonization on bacterial community composition outside the nasal microbiota is unclear. Thus, this report represents the first investigation that utilized both culture and high-throughput sequencing techniques to analyze microbial dysbiosis at multiple body sites of healthy and diseased/colonized individuals. The results described here may be useful in the design of future methodologies to treat and prevent SSTIs.


2018 ◽  
Author(s):  
K. Khanipov ◽  
G. Golovko ◽  
M. Rojas ◽  
M. Pimenova ◽  
L. Albayrak ◽  
...  

AbstractMicrobial activities have detrimental effects on industrial infrastructure. If not controlled, microbial presence can result in corrosion, biofilm formation, and product degradation. Serial dilution tests are routinely used for evaluating presence and abundance of microorganisms by diluting samples and culturing microbes in specific media designed to support microorganisms with particular properties, such as sulfate reduction.A high-throughput sequencing approach was used to evaluate changes in microbial composition during four standard serial dilution tests. Analysis of 159 isolates revealed significant differences in the microbial compositions of sequential serial dilution titers and identified several cases where: (a) bacteria known to have a detrimental metabolic function (such as acid production) were lost in the serial dilution medium designed to test for this function; (b) bacteria virtually absent in the original sample became dominant in the serial dilution medium. These observations raise concerns regarding the accuracy and overall usefulness of serial dilution tests.


Sign in / Sign up

Export Citation Format

Share Document