scholarly journals Dynamic gene expression profiles during postnatal development of porcine subcutaneous adipose

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1768 ◽  
Author(s):  
Jie Zhang ◽  
Jideng Ma ◽  
Keren Long ◽  
Long Jin ◽  
Yihui Liu ◽  
...  

A better understanding of the control of lipogenesis is of critical importance for both human and animal physiology. This requires a better knowledge of the changes of gene expression during the process of adipose tissue development. Thus, the objective of the current study was to determine the effects of development on subcutaneous adipose tissue gene expression in growing and adult pigs. Here, we present a comprehensive investigation of mRNA transcriptomes in porcine subcutaneous adipose tissue across four developmental stages using digital gene expression profiling. We identified 3,274 differential expressed genes associated with oxidative stress, immune processes, apoptosis, energy metabolism, insulin stimulus, cell cycle, angiogenesis and translation. A set of universally abundant genes (ATP8,COX2,COX3,ND1, ND2,SCDandTUBA1B) was found across all four developmental stages. This set of genes may play important roles in lipogenesis and development. We also identified development-related gene expression patterns that are linked to the different adipose phenotypes. We showed that genes enriched in significantly up-regulated profiles were associated with phosphorylation and angiogenesis. In contrast, genes enriched in significantly down-regulated profiles were related to cell cycle and cytoskeleton organization, suggesting an important role for these biological processes in adipose growth and development. These results provide a resource for studying adipose development and promote the pig as a model organism for researching the development of human obesity, as well as being used in the pig industry.

2017 ◽  
Vol 69 (1) ◽  
pp. 181-190 ◽  
Author(s):  
Yong Peng ◽  
Huiqin Ma ◽  
Shangwu Chen

Lycium ruthenicum Murr., which belongs to the family Solanaceae, is a resource plant for Chinese traditional medicine and nutraceutical foods. In this study, RNA sequencing was applied to obtain raw reads of L. ruthenicum fruit at different stages of ripening, and a de novo assembly of its sequence was performed. Approximately 52.45 million 100-bp paired-end raw reads were generated from the samples by deep RNA-seq analysis. These short reads were assembled to obtain 164814 contigs, and the contigs were assembled into 84968 non-redundant unigenes using the Trinity method. Assembled sequences were annotated with gene descriptions, gene ontology, clusters of orthologous group and KEGG (Kyoto Encyclopedia of Genes and Genomes)pathway terms. Digital gene expression analysis was applied to compare gene-expression patterns at different fruit developmental stages. These results contribute to existing sequence resources for Lycium spp. during the fruit-ripening stages, which is valuable for further functional studies of genes involved in L. ruthenicum fruit nutraceutical quality.


2009 ◽  
Vol 21 (1) ◽  
pp. 238 ◽  
Author(s):  
E. Monaco ◽  
A. Lima ◽  
S. Wilson ◽  
S. Lane ◽  
M. Bionaz ◽  
...  

The quantity and accessibility of subcutaneous adipose tissue in humans make it an attractive alternative to bone marrow as a source of adult stem cells for therapeutic purposes. However, before such a cell source substitution can be proposed, the properties of stem cells derived from adipose tissue (ADSC) and bone marrow (BMSC), and their differentiated progeny must be compared in an animal model, such as swine, that adequately simulates the structure and physiology of humans. The objective of this work was to induce adult porcine stem cells isolated from subcutaneous adipose tissue and bone marrow to differentiate in vitro along the adipogenic lineage and to compare their transcript profile properties. ADSC and BMSC were isolated from subcutaneous adipose tissue and femurs of adult pigs, respectively, and differentiated along the adipogenic lineage using specific inducing medium. Cells were incubated up to 4 weeks with medium replaced every 3 days. Histological staining with Oil Red O was performed at 0, 2, 4, 7, 14, 21, 28 days of differentiation (dd) to confirm the adipogenic differentiation. RNA was also extracted at these time points. qPCR was performed on PPARG, DBI, ACSL1, CD36, CEBPA, DGAT2, ADFP, ADIPOQ, SCD. The geometrical mean of GTF2H3, NUBP, and PPP2CB was used as an internal control. Gene expression was analyzed using a mixed model of SAS with repeated time. The adipogenic differentiation of both ADSC and BMSC was confirmed by the Oil Red O positive staining. The relative mRNA abundance of all the genes at dd0 was similar between the ADSC and BMSC. The relative mRNA abundance of most of the genes was also similar between ADSC and BMSC throughout the adipogenic differentiation. ACSL1 and ADIPOQ had analogous expression patterns among the cell types. ACSL1 had relatively large mRNA abundance before differentiation, but ADIPOQ was barely detectable. As a consequence of differentiation, ACSL1 increased in relative mRNA abundance about 10-fold, whereas ADIPOQ mRNA increased about 1000-fold. Temporal expression patterns of SCD, DGAT2, and ADFP were similar. The increase in gene expression was >800% for SCD, >500% for ADFP, and >50 000% for DGAT2 after 7dd. ADSC had significantly higher expression of those genes compared to BMSC at 14 and 28dd. Both ADIPOQ and DGAT2 were almost undetectable prior to differentiation. mRNA expression of CD36 and DBI was similar with a significantly larger increase in expression of ADSC compared with BMSC. Relative mRNA abundance of CEBPA and PPARG was also larger in ADSC compared with BMSC; however, BMSC had a remarkable increase in temporal expression of those genes throughout adipogenic differentiation. These results suggest both cell types can differentiate towards the adipogenic lineage but with quantitatively different gene expression patterns. More investigation is needed before the ADSC can be considered a practical alternative source for stem cells in future human clinical applications. This research was supported by the Illinois Regenerative Medicine Institute.


2011 ◽  
Vol 33 (6) ◽  
pp. 693-699 ◽  
Author(s):  
Dajeong Lim ◽  
Kyung-Tai Lee ◽  
Jong Eun Park ◽  
Heebal Kim ◽  
Tae-Hun Kim ◽  
...  

2014 ◽  
Vol 58 (11) ◽  
pp. 6717-6723 ◽  
Author(s):  
L. Egaña-Gorroño ◽  
E. Martínez ◽  
P. Domingo ◽  
M. Loncà ◽  
T. Escribà ◽  
...  

ABSTRACTGene expression studies of subcutaneous adipose tissue may help to better understand the mechanisms behind body fat changes in HIV-infected patients who initiate antiretroviral therapy (ART). Here, we evaluated early changes in adipose tissue gene expression and their relationship to fat changes in ART-naive HIV-infected patients randomly assigned to initiate therapy with emtricitabine/tenofovir plus efavirenz (EFV) or ritonavir-boosted lopinavir (LPV/r). Patients had abdominal subcutaneous adipose tissue biopsies at baseline and week 16 and dual-energy-X-ray absorptiometry at baseline and weeks 16 and 48. mRNA changes of 11 genes involved in adipogenesis, lipid and glucose metabolism, mitochondrial energy, and inflammation were assessed through reverse transcription-quantitative PCR (RT-qPCR). Additionally, correlations between gene expression changes and fat changes were evaluated. Fat increased preferentially in the trunk with EFV and in the limbs with LPV/r (P< 0.05). After 16 weeks of exposure to the drug regimen, transcripts ofCEBP/A,ADIPOQ,GLUT4,LPL, andCOXIVwere significantly down-regulated in the EFV arm compared to the LPV/r arm (P< 0.05). Significant correlations were observed betweenLPLexpression change and trunk fat change at week 16 in both arms and betweenCEBP/AorCOXIVchange and trunk fat change at the same time point only in the EFV arm and not in the LPV/r arm. When combined with emtricitabine/tenofovir as standard backbone therapy, EFV and LPV/r induced differential early expression of genes involved in adipogenesis and energy metabolism. Moreover, these mRNA expression changes correlated with trunk fat change in the EFV arm. (This was a substudy of a randomized clinical trial [LIPOTAR study] registered atClinicalTrials.govunder identifier NCT00759070.)


2011 ◽  
Vol 20 (5) ◽  
pp. e153-e156 ◽  
Author(s):  
Clara Bambace ◽  
Mariassunta Telesca ◽  
Elena Zoico ◽  
Anna Sepe ◽  
Debora Olioso ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Marianthi Kalafati ◽  
Michael Lenz ◽  
Gökhan Ertaylan ◽  
Ilja C. W. Arts ◽  
Chris T. Evelo ◽  
...  

Background: Macrophages play an important role in regulating adipose tissue function, while their frequencies in adipose tissue vary between individuals. Adipose tissue infiltration by high frequencies of macrophages has been linked to changes in adipokine levels and low-grade inflammation, frequently associated with the progression of obesity. The objective of this project was to assess the contribution of relative macrophage frequencies to the overall subcutaneous adipose tissue gene expression using publicly available datasets.Methods: Seven publicly available microarray gene expression datasets from human subcutaneous adipose tissue biopsies (n = 519) were used together with TissueDecoder to determine the adipose tissue cell-type composition of each sample. We divided the subjects in four groups based on their relative macrophage frequencies. Differential gene expression analysis between the high and low relative macrophage frequencies groups was performed, adjusting for sex and study. Finally, biological processes were identified using pathway enrichment and network analysis.Results: We observed lower frequencies of adipocytes and higher frequencies of adipose stem cells in individuals characterized by high macrophage frequencies. We additionally studied whether, within subcutaneous adipose tissue, interindividual differences in the relative frequencies of macrophages were reflected in transcriptional differences in metabolic and inflammatory pathways. Adipose tissue of individuals with high macrophage frequencies had a higher expression of genes involved in complement activation, chemotaxis, focal adhesion, and oxidative stress. Similarly, we observed a lower expression of genes involved in lipid metabolism, fatty acid synthesis, and oxidation and mitochondrial respiration.Conclusion: We present an approach that combines publicly available subcutaneous adipose tissue gene expression datasets with a deconvolution algorithm to calculate subcutaneous adipose tissue cell-type composition. The results showed the expected increased inflammation gene expression profile accompanied by decreased gene expression in pathways related to lipid metabolism and mitochondrial respiration in subcutaneous adipose tissue in individuals characterized by high macrophage frequencies. This approach demonstrates the hidden strength of reusing publicly available data to gain cell-type-specific insights into adipose tissue function.


Sign in / Sign up

Export Citation Format

Share Document