scholarly journals Ontogeny reversal and phylogenetic analysis of Turritopsis sp.5 (Cnidaria, Hydrozoa, Oceaniidae), a possible new species endemic to Xiamen, China

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4225 ◽  
Author(s):  
Jun-yuan Li ◽  
Dong-hui Guo ◽  
Peng-cheng Wu ◽  
Li-sheng He

Ontogeny reversal, as seen in some cnidarians, is an unprecedented phenomenon in the animal kingdom involving reversal of the ordinary life cycle. Three species of Turritopsis have been shown to be capable of inverted metamorphosis, a process in which the pelagic medusa transforms back into a juvenile benthic polyp stage when faced with adverse conditions. Turritopsis sp.5 is a species of Turritopsis collected from Xiamen, China which presents a similar ability, being able to reverse its life cycle if injured by mechanical stress. Phylogenetic analysis based on both 16S rDNA and cytochrome c oxidase subunit I (COI) genetic barcodes shows that Turritopsis sp.5 is phylogenetically clustered in a clade separate from other species of Turritopsis. The genetic distance between T. sp.5 and the Japanese species T. sp.2 is the shortest, when measured by the Kimura 2-Parameter metric, and the distance to the New Zealand species T. rubra is the largest. An experimental assay on the induction of reverse development in this species was initiated by cutting medusae into upper and lower parts. We show, for the first time, that the two dissected parts have significantly different potentials to transform into polyps. Also, a series of morphological changes of the reversed life cycle can be recognised, including medusa stage, contraction stage I, contraction stage II, cyst, cyst with stolons, and polyp. The discovery of species capable of reverse ontogeny caused by unfavorable conditions adds to the available systems with which to study the cell types that contribute to the developmental reversal and the molecular mechanisms of the directional determination of ontogeny.

2001 ◽  
Vol 153 (4) ◽  
pp. 823-834 ◽  
Author(s):  
Reto Caldelari ◽  
Alain de Bruin ◽  
Dominique Baumann ◽  
Maja M. Suter ◽  
Christiane Bierkamp ◽  
...  

In pemphigus vulgaris (PV), autoantibody binding to desmoglein (Dsg) 3 induces loss of intercellular adhesion in skin and mucous membranes. Two hypotheses are currently favored to explain the underlying molecular mechanisms: (a) disruption of adhesion through steric hindrance, and (b) interference of desmosomal cadherin-bound antibody with intracellular events, which we speculated to involve plakoglobin. To investigate the second hypothesis we established keratinocyte cultures from plakoglobin knockout (PG−/−) embryos and PG+/+ control mice. Although both cell types exhibited desmosomal cadherin-mediated adhesion during calcium-induced differentiation and bound PV immunoglobin (IgG) at their cell surface, only PG+/+ keratinocytes responded with keratin retraction and loss of adhesion. When full-length plakoglobin was reintroduced into PG−/− cells, responsiveness to PV IgG was restored. Moreover, in these cells like in PG+/+ keratinocytes, PV IgG binding severely affected the linear distribution of plakoglobin at the plasma membrane. Taken together, the establishment of an in vitro model using PG+/+ and PG−/− keratinocytes allowed us (a) to exclude the steric hindrance only hypothesis, and (b) to demonstrate for the first time that plakoglobin plays a central role in PV, a finding that will provide a novel direction for investigations of the molecular mechanisms leading to PV, and on the function of plakoglobin in differentiating keratinocytes.


2002 ◽  
Vol 115 (5) ◽  
pp. 923-929 ◽  
Author(s):  
Yosef Gruenbaum ◽  
Kenneth K. Lee ◽  
Jun Liu ◽  
Merav Cohen ◽  
Katherine L. Wilson

Emerin belongs to the LEM-domain family of nuclear membrane proteins, which are conserved in metazoans from C. elegans to humans. Loss of emerin in humans causes the X-linked form of Emery-Dreifuss muscular dystrophy(EDMD), but the disease mechanism is not understood. We have begun to address the function of emerin in C. elegans, a genetically tractable nematode. The emerin gene (emr-1) is conserved in C. elegans. We detect Ce-emerin protein in the nuclear envelopes of all cell types except sperm, and find that Ce-emerin co-immunoprecipitates with Ce-lamin from embryo lysates. We show for the first time in any organism that nuclear lamins are essential for the nuclear envelope localization of emerin during early development. We further show that four other types of nuclear envelope proteins, including fellow LEM-domain protein Ce-MAN1, as well as Ce-lamin, UNC-84 and nucleoporins do not depend on Ce-emerin for their localization. This result suggests that emerin is not essential to organize or localize the only lamin (B-type) expressed in C. elegans. We also analyzed the RNAi phenotype resulting from the loss of emerin function in C. elegans under laboratory growth conditions, and found no detectable phenotype throughout development. We propose that C. elegans is an appropriate system in which to study the molecular mechanisms of emerin function in vivo.


Author(s):  
Thomas Hollin ◽  
Karine G. Le Roch

Over the past decade, we have witnessed significant progresses in understanding gene regulation in Apicomplexa including the human malaria parasite, Plasmodium falciparum. This parasite possesses the ability to convert in multiple stages in various hosts, cell types, and environments. Recent findings indicate that P. falciparum is talented at using efficient and complementary molecular mechanisms to ensure a tight control of gene expression at each stage of its life cycle. Here, we review the current understanding on the contribution of the epigenome, atypical transcription factors, and chromatin organization to regulate stage conversion in P. falciparum. The adjustment of these regulatory mechanisms occurring during the progression of the life cycle will be extensively discussed.


2009 ◽  
Vol 20 (22) ◽  
pp. 4838-4844 ◽  
Author(s):  
Melanie P. Wescott ◽  
Meritxell Rovira ◽  
Maximilian Reichert ◽  
Johannes von Burstin ◽  
Anna Means ◽  
...  

Embryonic development of the pancreas is marked by an early phase of dramatic morphogenesis, in which pluripotent progenitor cells of the developing pancreatic epithelium give rise to the full array of mature exocrine and endocrine cell types. The genetic determinants of acinar and islet cell lineages are somewhat well defined; however, the molecular mechanisms directing ductal formation and differentiation remain to be elucidated. The complex ductal architecture of the pancreas is established by a reiterative program of progenitor cell expansion and migration known as branching morphogenesis, or tubulogenesis, which proceeds in mouse development concomitantly with peak Pdx1 transcription factor expression. We therefore evaluated Pdx1 expression with respect to lineage-specific markers in embryonic sections of the pancreas spanning this critical period of duct formation and discovered an unexpected population of nonislet Pdx1-positive cells displaying physical traits of branching. We then established a 3D cell culture model of branching morphogenesis using primary pancreatic duct cells and identified a transient surge of Pdx1 expression exclusive to branching cells. From these observations we propose that Pdx1 might be involved temporally in a program of gene expression sufficient to facilitate the biochemical and morphological changes necessary for branching morphogenesis.


Microbiology ◽  
2004 ◽  
Vol 150 (2) ◽  
pp. 383-390 ◽  
Author(s):  
James E. Berleman ◽  
Carl E. Bauer

Rhodospirillum centenum is an anoxygenic photosynthetic bacterium that is capable of differentiating into several cell types. When grown phototrophically in liquid, cells exhibit a vibrioid shape and have a single polar flagellum. When grown on a solid surface, R. centenum will differentiate into rod-shaped swarm cells that display numerous lateral flagella. Upon starvation for nutrients, R. centenum also forms desiccation-resistant cysts. In this study, it was determined that R. centenum has heat- and desiccation-resistance properties similar to other cyst-forming species. In addition, microscopic analyses of the morphological changes that occur during cyst cell development were performed. It was observed that R. centenum typically forms multi-celled clusters of cysts that contain from four to more than 10 cells per cluster. It was also determined that cell density has a minor effect on the percentage of cyst cells formed, with cell densities of 105–107 cells per 5 μl spot yielding the highest percentage of cyst cells. The striking similarities between the life cycle of R. centenum and the life cycle exhibited by Azospirillum spp. are discussed.


2019 ◽  
Author(s):  
Kylie Jacobs ◽  
Robert Charvat ◽  
Gustavo Arrizabalaga

ABSTRACTToxoplasma gondii’s singular mitochondrion is very dynamic and undergoes morphological changes throughout the parasite’s life cycle. During parasite division, the mitochondrion elongates, enters the daughter cells just prior to cytokinesis and undergoes fission. Extensive morphological changes also occur as the parasite transitions from the intracellular to the extracellular environment. We show that treatment with the ionophore monensin causes reversible constriction of the mitochondrial outer membrane, and that this effect depends on the function of the fission related protein Fis1. We also observed that mislocalization of the endogenous Fis1 causes a dominant negative effect that affects the morphology of the mitochondrion. As this suggests Fis1 interacts with proteins critical for maintenance of mitochondrial structure, we performed various protein interaction trap screens. In this manner we identified a novel outer mitochondrial membrane protein, LMF1, which is essential for positioning of the mitochondrion in intracellular parasites. Normally, while inside a host cell, the parasite mitochondrion is maintained in a lasso shape that stretches around the parasite periphery where it has regions of coupling with the parasite pellicle, suggesting the presence of membrane contact sites. In intracellular parasites lacking LMF1 the mitochondrion is retracted away from the pellicle and instead is collapsed, as only normally seen in extracellular parasites. We show that this phenotype is associated with defects in parasite fitness and mitochondrial segregation. Thus, LMF1 is necessary for mitochondrial association with the parasite pellicle during intracellular growth and proper mitochondrial morphology is a prerequisite for mitochondrial division.IMPORTANCEToxoplasma gondii is an opportunistic pathogen that can cause devastating tissue damage in the immunocompromised and the congenitally infected. Current therapies are not effective against all life stages of the parasite and many cause toxic effects. The single mitochondrion of this parasite is a validated drug target and it changes its shape throughout its life cycle. When the parasite is inside of a cell, the mitochondrion adopts a lasso shape that lies in close proximity to the pellicle. The functional significance of this morphology is not understood nor are the proteins involved currently known. We have identified a protein that is required for proper mitochondrial positioning at the periphery and that likely plays a role in tethering this organelle. Loss of this protein results in dramatic changes to the mitochondrial morphology and significant parasite division and propagation defects. Our results give important insight into the molecular mechanisms regulating mitochondrial morphology.


2014 ◽  
Vol 42 (4) ◽  
pp. 1246-1250 ◽  
Author(s):  
Virginia Castilla-Llorente ◽  
Andres Ramos

RNA granules have been observed in different organisms, cell types and under different conditions, and their formation is crucial for the mRNA life cycle. However, very little is known about the molecular mechanisms governing their assembly and disassembly. The aggregation-prone LSCRs (low-sequence-complexity regions), and in particular, the polyQ/N-rich regions, have been extensively studied under pathological conditions due to their role in neurodegenerative diseases. In the present review, we discuss recent in vitro, in vivo and computational data that, globally, suggest a role for polyQ/N regions in RNA granule assembly.


Author(s):  
J. Chakraborty ◽  
A. P. Sinha Hikim ◽  
J. S. Jhunjhunwala

Although the presence of annulate lamellae was noted in many cell types, including the rat spermatogenic cells, this structure was never reported in the Sertoli cells of any rodent species. The present report is based on a part of our project on the effect of torsion of the spermatic cord to the contralateral testis. This paper describes for the first time, the fine structural details of the annulate lamellae in the Sertoli cells of damaged testis from guinea pigs.One side of the spermatic cord of each of six Hartly strain adult guinea pigs was surgically twisted (540°) under pentobarbital anesthesia (1). Four months after induction of torsion, animals were sacrificed, testes were excised and processed for the light and electron microscopic investigations. In the damaged testis, the majority of seminiferous tubule contained a layer of Sertoli cells with occasional spermatogonia (Fig. 1). Nuclei of these Sertoli cells were highly pleomorphic and contained small chromatinic clumps adjacent to the inner aspect of the nuclear envelope (Fig. 2).


Author(s):  
Sylvie Polak-Charcon ◽  
Mehrdad Hekmati ◽  
Yehuda Ben Shaul

The epithelium of normal human colon mucosa “in vivo” exhibits a gradual pattern of differentiation as undifferentiated stem cells from the base of the crypt of “lieberkuhn” rapidly divide, differentiate and migrate toward the free surface. The major differentiated cell type of the intestine observed are: absorptive cells displaying brush border, goblet cells containing mucous granules, Paneth and endocrine cells containing dense secretory granules. These different cell types are also found in the intestine of the 13-14 week old embryo.We present here morphological evidence showing that HT29, an adenocarcinoma of the human colon cell line, can differentiate into various cell types by changing the growth and culture conditions and mimic morphological changes found during development of the intestine in the human embryo.HT29 cells grown in tissue-culture dishes in DMEM and 10% FCS form at late confluence a multilayer of morphologically undifferentiated cell culture covered with irregular microvilli, and devoid of tight junctions (Figs 1-3).


2020 ◽  
Vol 62 (1-2) ◽  
pp. 69-108
Author(s):  
S. Y. Kondratyuk ◽  
D. K. Upreti ◽  
G. K. Mishra ◽  
S. Nayaka ◽  
K. K. Ingle ◽  
...  

Eight species, new for science, i.e.: Lobothallia gangwondoana S. Y. Kondr., J.-J. Woo et J.-S. Hur and Phyllopsora dodongensis S. Y. Kondr. et J.-S. Hur from South Korea, Eastern Asia, Ioplaca rinodinoides S. Y. Kondr., K. K. Ingle, D. K. Upreti et S. Nayaka, Letrouitia assamana S. Y. Kondr., G. K. Mishra et D. K. Upreti, and Rusavskia indochinensis S. Y. Kondr., D. K. Upreti et S. Nayaka from India and China, South Asia, Caloplaca orloviana S. Y. Kondr. and Rusavskia drevlyanica S. Y. Kondr. et O. O. Orlov from Ukraine, Eastern Europe, as well as Xanthoria ibizaensis S. Y. Kondr. et A. S. Kondr. from Ibiza Island, Spain, Mediterranean Europe, are described, illustrated and compared with closely related taxa. Fominiella tenerifensis S. Y. Kondr., Kärnefelt, A. Thell et Feuerer is for the first time recorded from Mediterranean Europe, Huriella loekoesiana S. Y. Kondr. et Upreti is provided from Russia for the first time, and H. pohangensis S. Y. Kondr., L. Lőkös et J.-S. Hur for the first time from China, Phoma candelariellae Z. Kocakaya et Halıcı is new to Ukraine, and Staurothele frustulenta Vain. is recorded from the Forest Zone of Ukraine for the first time. Twelve new combinations, i.e.: Bryostigma apotheciorum (for Sphaeria apotheciorum A. Massal.), Bryostigma biatoricola (for Arthonia biatoricola Ihlen et Owe-Larss.), Bryostigma dokdoense (for Arthonia dokdoensis S. Y. Kondr., L. Lőkös, B. G. Lee, J.-J. Woo et J.-S. Hur), Bryostigma epiphyscium (for Arthonia epiphyscia Nyl.), Bryostigma lobariellae (for Arthonia lobariellae Etayo), Bryostigma lapidicola (for Lecidea lapidicola Taylor), Bryostigma molendoi (for Tichothecium molendoi Heufl. ex Arnold), Bryostigma neglectulum (for Arthonia neglectula Nyl.), Bryostigma parietinarium (for Arthonia parietinaria Hafellner et Fleischhacker), Bryostigma peltigerinum (for Arthonia vagans var. peltigerina Almq.), Bryostigma phaeophysciae (for Arthonia phaeophysciae Grube et Matzer), Bryostigma stereocaulinum (for Arthonia nephromiaria var. stereocaulina Ohlert), are proposed based on results of combined phylogenetic analysis based on mtSSU and RPB2 gene sequences. Thirty-one new combinations for members of the genus Polyozosia (i.e.: Polyozosia actophila (for Lecanora actophila Wedd.), Polyozosia agardhiana (for Lecanora agardhiana Ach.), Polyozosia altunica (for Myriolecis altunica R. Mamut et A. Abbas), Polyozosia antiqua (for Lecanora antiqua J. R. Laundon), Polyozosia bandolensis (for Lecanora bandolensis B. de Lesd.), Polyozosia behringii (for Lecanora behringii Nyl.), Polyozosia caesioalutacea (for Lecanora caesioalutacea H. Magn.), Polyozosia carlottiana (for Lecanora carlottiana C. J. Lewis et Śliwa), Polyozosia congesta (for Lecanora congesta Clauzade et Vězda), Polyozosia eurycarpa (for Lecanora eurycarpa Poelt, Leuckert et Cl. Roux), Polyozosia expectans (Lecanora expectans Darb.), Polyozosia flowersiana (Lecanora flowersiana H. Magn.), Polyozosia fugiens (for Lecanora fugiens Nyl.), Polyozosia invadens (for Lecanora invadens H. Magn.), Polyozosia juniperina (for Lecanora juniperina Śliwa), Polyozosia latzelii (for Lecanora latzelii Zahlbr.), Polyozosia liguriensis (for Lecanora liguriensis B. de Lesd.), Polyozosia massei (for Myriolecis massei M. Bertrand et J.-Y. Monnat), Polyozosia mons-nivis (for Lecanora mons-nivis Darb.), Polyozosia oyensis (for Lecanora oyensis M.-P. Bertrand et Cl. Roux), Polyozosia percrenata (for Lecanora percrenata H. Magn.), Polyozosia persimilis (for Lecanora hagenii subsp. persimilis Th. Fr.), Polyozosia poeltiana (for Lecanora poeltiana Clauzade et Cl. Roux), Polyozosia prominens (for Lecanora prominens Clauzade et Vězda), Polyozosia prophetae-eliae (for Lecanora prophetae-eliae Sipman), Polyozosia salina (for Lecanora salina H. Magn.), Polyozosia schofieldii (for Lecanora schofieldii Brodo), Polyozosia sverdrupiana (for Lecanora sverdrupiana Øvstedal), Polyozosia torrida (for Lecanora torrida Vain.), Polyozosia wetmorei (for Lecanora wetmorei Śliwa), Polyozosia zosterae (for Lecanora subfusca? zosterae Ach.)) are proposed.


Sign in / Sign up

Export Citation Format

Share Document