scholarly journals Effects of ultraviolet radiation on metabolic rate and fitness of Aedes albopictus and Culex pipiens mosquitoes

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6133 ◽  
Author(s):  
Oswaldo C. Villena ◽  
Bahram Momen ◽  
Joseph Sullivan ◽  
Paul T. Leisnham

Natural and anthropogenic changes (e.g., land use change, pollution) will alter many environmental factors in the coming years, including the amount of solar radiation reaching the earth’s surface. Alterations in solar radiation exposure is likely to impact the ecologies of many living organisms, including invertebrates that inhabit aquatic habitats. In this study, we assessed the effect of UV-B radiation on the metabolic rates and fitness (survival, development time, body size) of Aedes albopictus and Culex pipiens mosquitoes and the activity of their microbial food resources in experimental aquatic microcosms. We exposed single-species cohorts of newly hatched Ae. albopictus and Cx. pipiens larvae and a control treatment with no larvae to three UV-B conditions that mimicked those in full-sun and shade in the field and to a control condition with no UV-B radiation. Our results indicated that UV-B radiation affected the metabolic rates of both Ae. albopictus and Cx. pipiens larvae, with significantly higher rates found in full-sun compared to shade and no-UV conditions, 8 and 15 days after exposure began. Ae. albopictus and Cx. pipiens survival was also affected by UV-B radiation condition, with significantly lower survival in full-sun compared to shade and no UV-B conditions. Microbial metabolic rates were consistently significantly lower in full-sun compared to shade and no-UV conditions, especially at 8 days of exposure. These results show that UV-B radiation at levels found in open spaces showed strong and important impacts on the metabolic rates and survival of Ae. albopictus and Cx. pipiens larvae. Decreased survival of Ae. albopictus and Cx. pipiens with higher UV-B radiation levels may be caused by both direct exposure to radiation as well as the indirect effects of reduced microbial food, resulting in greater metabolic demands and stress. Negative impacts of UV-B radiation on the survival of Ae. albopictus and Cx. pipiens are likely to have important implications for the distribution and abundance of these mosquitoes, and the transmission of pathogens that these two broadly distributed mosquitoes vector.

2018 ◽  
Author(s):  
Oswaldo C Villena ◽  
Bahram Momen ◽  
Joseph Sullivan ◽  
Paul T Leisnham

Environmental changes will alter many environmental factors in the coming years including temperature, precipitation, humidity, and the amount of solar radiation reaching the earth’s surface, which in turn will have an impact on living organisms like invertebrates. In this study, we assessed the effect of UV-B radiation upon the metabolic rate and upon three fitness parameters (survival, development time, and body size) of the mosquitoes Aedes albopictus and Culex pipiens, and upon the production of microbial resources on which mosquito larvae feed in aquatic microcosms. We set up three UV-B radiation treatments mimicking levels typically measured in full-sun (FS) and shade (S) conditions, as well as a control group with no UV-B radiation (NUV). The metabolic rate expressed as heat production (µwatts/ml) for larvae and microbial community was measured at days 1, 8, and 15. Our results indicated that UV-B radiation affected the metabolic rate of both Cx. pipiens and Ae. albopictus larvae; metabolic rates were significantly higher in full-sun (FS) compared to shade (S) and no-UV condition (NUV), at days 8 and 15 compared to day 1 (Figures 1A and 1B). Culex pipiens metabolic rates were significantly higher than Ae. albopictus at day 15 compared to days 1 and 8 (Figure 1B). Metabolic rates were significantly lower in microbial communities from vials with Ae. albopictus larvae, Cx. pipiens larvae, and no larvae in FS conditions compared to vials from S and NUV conditions, especially at day 8 (Figure 2A and 2B). There was a major effect of UV-B conditions only on the survival of Ae. albopictus and Cx. pipiens mosquitoes, with significantly lower survival in FS compared to S and NUV conditions. UV-B radiation at levels found in aquatic environments in open fields showed a negative impact on the metabolic rate of Ae. albopictus and Cx. pipiens larvae and on the microbial communities on which they feed. These negative impacts could have important implications for the distribution and abundance of these mosquitoes and for the transmission rate of illness caused by the pathogens that these two broadly distributed mosquitoes transmit.


2018 ◽  
Author(s):  
Oswaldo C Villena ◽  
Bahram Momen ◽  
Joseph Sullivan ◽  
Paul T Leisnham

Environmental changes will alter many environmental factors in the coming years including temperature, precipitation, humidity, and the amount of solar radiation reaching the earth’s surface, which in turn will have an impact on living organisms like invertebrates. In this study, we assessed the effect of UV-B radiation upon the metabolic rate and upon three fitness parameters (survival, development time, and body size) of the mosquitoes Aedes albopictus and Culex pipiens, and upon the production of microbial resources on which mosquito larvae feed in aquatic microcosms. We set up three UV-B radiation treatments mimicking levels typically measured in full-sun (FS) and shade (S) conditions, as well as a control group with no UV-B radiation (NUV). The metabolic rate expressed as heat production (µwatts/ml) for larvae and microbial community was measured at days 1, 8, and 15. Our results indicated that UV-B radiation affected the metabolic rate of both Cx. pipiens and Ae. albopictus larvae; metabolic rates were significantly higher in full-sun (FS) compared to shade (S) and no-UV condition (NUV), at days 8 and 15 compared to day 1 (Figures 1A and 1B). Culex pipiens metabolic rates were significantly higher than Ae. albopictus at day 15 compared to days 1 and 8 (Figure 1B). Metabolic rates were significantly lower in microbial communities from vials with Ae. albopictus larvae, Cx. pipiens larvae, and no larvae in FS conditions compared to vials from S and NUV conditions, especially at day 8 (Figure 2A and 2B). There was a major effect of UV-B conditions only on the survival of Ae. albopictus and Cx. pipiens mosquitoes, with significantly lower survival in FS compared to S and NUV conditions. UV-B radiation at levels found in aquatic environments in open fields showed a negative impact on the metabolic rate of Ae. albopictus and Cx. pipiens larvae and on the microbial communities on which they feed. These negative impacts could have important implications for the distribution and abundance of these mosquitoes and for the transmission rate of illness caused by the pathogens that these two broadly distributed mosquitoes transmit.


2016 ◽  
Vol 824 ◽  
pp. 477-484 ◽  
Author(s):  
Miroslav Čekon ◽  
Richard Slávik ◽  
Peter Juras

Solar radiation exposure and its monitoring does have not only the importance for climate science and meteorology however is equally of highly relevant use for the field of Building Science as primarily those of analyzing thermal aspects in building physics. Here the measuring of solar irradiance by means of well-established solar instruments can be applied whose advances have been undergoing steep progress. Currently, a silicon photodiode element, as a truly obtainable form, may have a feasible exploitation in the field of building applications concerning the solar radiant flux quantifying. It represents a small optoelectronic element and has a several exploitable advantages. The paper presents a perspective alternative to monitor solar irradiance. Own measurement assembly is proposed and introduced. Initial in-situ measurements are performed and final comparability with existing commercial solar instruments is presented. An obtained correlation with existing types demonstrates its applicability to the field of building science and solar energy.


2021 ◽  
Author(s):  
Marzieh Sepahvand ◽  
Forough Ghasemi ◽  
Hossein Mirseyed Hosseini

The excessive presence of nitrite and nitrate in the environmental matrixes has raised concerns among the scientific communities due to their negative impacts on human health and living organisms. Considering...


Author(s):  
Jean-Frédéric Morin ◽  
Amandine Orsini ◽  
Sikina Jinnah

This chapter explores the complex and multifaceted relationship between international trade and environmental protection. The global trade regime's normative principles, legal rules, and real-world consequences often contradict environmental governance. For example, there is tension between trade and environmental governance with respect to the commercialisation of endangered species, export of hazardous wastes, emissions involved in transporting goods, and patentability of living organisms. However, there are also synergies, which enable trade liberalisation and environmental protection to reinforce one another. For example, trade forces were key drivers in the reduction of ozone-depleting substances and the affordability of pollution abatement technologies. The chapter explores these conflicts and synergies by first discussing the literature that examines the positive and negative impacts that trade has on the environment. It goes on to look at the trade dimensions of various environmental regimes, and then environmental dimensions of the trade regime, within both the World Trade Organization and preferential trade agreements.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Elijah O. Juma ◽  
Brian F. Allan ◽  
Chang-Hyun Kim ◽  
Christopher Stone ◽  
Christopher Dunlap ◽  
...  

2020 ◽  
Vol 168 (2) ◽  
pp. 148-157
Author(s):  
Mihaela Kavran ◽  
Igor Pajović ◽  
Dušan Petrić ◽  
Aleksandra Ignjatović‐Ćupina ◽  
Nedeljko Latinović ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document