scholarly journals Synthesis of silver nanoparticles using a Mentha spicata extract and evaluation of its anticancer and cytotoxic activity

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8142 ◽  
Author(s):  
Yuridia Torres-Martínez ◽  
Eder Arredondo-Espinoza ◽  
Carlos Puente ◽  
Omar González-Santiago ◽  
Nayely Pineda-Aguilar ◽  
...  

In this study, silver nanoparticles (NP) were synthesized by two methods: using an aqueous extract of Mentha spicata leaves and using citrate ions as stabilizing agent, and the cytotoxicity and anticancer activity of both NP were evaluated in vitro. The particles synthesized with the aqueous extract were spherical with a size ranging from 15 to 45 nm. These NP decreased cell viability in all of the cells studied; however, the IC50 could only be estimated in the Chang liver cells (IC50 = 21.37 µg/mL). These particles also decreased the generation of reactive oxygen species in Chang and SiHa cells. Additionally, the dispersions decreased the activity of caspase-3. There was no significant difference between the biological activities of the NP obtained with the aqueous extract and the NP synthesized using citrate ions. This study showed that an aqueous extract of M. spicata is an excellent alternative for the synthesis of silver NP. These NP showed cytotoxicity and anticancer activity in vitro. Although more experiments are required, the cell death occurs probably through a mechanism different from apoptosis.

2020 ◽  
Vol 21 (5) ◽  
pp. 1719 ◽  
Author(s):  
Fatma Elleuch ◽  
Patrick Baril ◽  
Mohamed Barkallah ◽  
Federico Perche ◽  
Slim Abdelkafi ◽  
...  

In order to harness local resources to improve well-being and human health, we aim in this study to investigate if the microalgae Dunaliella sp. isolated from the Tunisian coastal zone possesses any anticancer activity. Dunaliella sp. was cultured under normal (DSC) or stressed (DSS) conditions and extracted using different procedures. The biological activity assessment was performed on the Triple Negative Breast Cancer (TNBC) using 4T1 murine cells as a model. Results indicate that: (i) aqueous extract was the most cytotoxic compared to ethanolic and hydroalcoholic extracts; (ii) DSS activity was superior to that of DSC. DSS extracts induced apoptosis rather than necrosis, as evidenced by DNA fragmentation, PARP-1 cleavage and caspase-3 activation. Evaluation in an orthotopic TNBC model validated the anticancer activity in vivo. Intratumoral injection of DSS extract resulted in reduced tumor growth and an enhanced immune system activation. On the transcriptional side, the expression level of the immunosuppressive enzyme Arg-1 was decreased, as well as those of NOS-2 and COX-2 genes. These results suggest a potential anticancer activity of Tunisian Dunaliella sp. deserving further attention.


Author(s):  
S. W. Odeyemi ◽  
J. De La Mare ◽  
A. L. Edkins ◽  
A. J. Afolayan

Abstract Background The cytotoxic properties of nanoparticles have attracted a great deal of attention in the field of nanoscience and nanotechnology due to their small size and ability to penetrate cellular membranes. Methods The silver nanoparticles were synthesized using Elaeodendron croceum stem bark and characterized. The oral acute toxicity studies were carried out by administration of 500, 1000, 2000 mg/kg body weight to Wister rats in respective groups. An in vitro cytotoxicity assay was evaluated in MDA-MB-231 breast cancer cells using the WST-1 Cell Proliferation assay. The percentage of cell viability after treatment with aqueous extracts of Elaeodendron croceum (ECE) and Elaeodendron croceum silver nanoparticles (ECAgNPs) was compared with that of paclitaxel. Results The in vivo studies revealed that the LD50 was higher than 2000 mg/kg and there was no significant difference (p>0.05) between the treatment groups compared with the control group for mean organ-to-body weight ratio except in the liver and in all hematological parameters except WBC and hematocrit. Similarly, there was no significant difference (p>0.05) for serum electrolytes (Na+, Mg2+ K+, Cl−, and Ca2+), total protein, urea, ɣ-glutamyl transferase (GGT), Aspartate aminotransferase (AST), Alkaline phosphatase (ALP), Alanine aminotransferase (ALT), albumin, total and conjugated bilirubin between the treatment and the control group. However, there were changes in creatinine, urea, and cholesterol. In the in vitro assays, ECE and ECAgNPs showed IC50 values of 70.87±2.99 and 138.8±3.98 µg/mL respectively against MDA-MB-231 cells compared to paclitaxel, which showed an IC50 value of 80 ng/mL. Conclusion The results showed that the LD50 of the ECE and ECAgNPs in Wister rats was determined to be greater than 2000 mg/kg body weight. The aqueous extract also showed more cytotoxic than the ECAgNPs suggesting that the toxic compounds in aqueous extract were involved in the capping of the AgNPs.


2014 ◽  
Vol 2 ◽  
pp. 194308921350703 ◽  
Author(s):  
N. Muniyappan ◽  
N. S. Nagarajan

Silver nanoparticles (AgNPs) synthesized are utilized in drugs because of their pharmacological and biomedical applications and also due to their ecofriendly properties. In the present study, stable AgNPs have been synthesized from the aqueous extract of Dalbergia rostrata stem bark (DRSB), which is used both as a reducing and as a stabilizing agent. The AgNPs synthesized by ultrasonication at 25°C for 10 min were found to be stable in aqueous solution at room temperature over a period of 3 months. The quantitatively stable AgNPs formed by treating the aqueous solution of AgNO3 with the aqueous extract of the plant by reduction of Ag+ ions when monitored by UV–visible spectroscopic study revealed the surface plasmon resonance (SPR) at 425 nm. According to transmission electron micrography, the NPs were spherical and in the size range of 14 ± 4 nm. When evaluated for their anti-inflammatory and antioxidant activity by in vitro methods, AgNPs showed considerably enhanced activity compared to DRSB aqueous extract.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hend M. Tag ◽  
Amna A. Saddiq ◽  
Monagi Alkinani ◽  
Nashwa Hagagy

AbstractHaloferax sp strain NRS1 (MT967913) was isolated from a solar saltern on the southern coast of the Red Sea, Jeddah, Saudi Arabia. The present study was designed for estimate the potential capacity of the Haloferax sp strain NRS1 to synthesize (silver nanoparticles) AgNPs. Biological activities such as thrombolysis and cytotoxicity of biosynthesized AgNPs were evaluated. The characterization of silver nanoparticles biosynthesized by Haloferax sp (Hfx-AgNPs) was analyzed using UV–vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The dark brown color of the Hfx-AgNPs colloidal showed maximum absorbance at 458 nm. TEM image analysis revealed that the shape of the Hfx-AgNPs was spherical and a size range was 5.77- 73.14 nm. The XRD spectra showed a crystallographic plane of silver nanoparticles, with a crystalline size of 29.28 nm. The prominent FTIR peaks obtained at 3281, 1644 and 1250 cm− 1 identified the Functional groups involved in the reduction of silver ion reduction to AgNPs. Zeta potential results revealed a negative surface charge and stability of Hfx-AgNPs. Colloidal solution of Hfx-AgNPs with concentrations ranging from 3.125 to 100 μg/mL was used to determine its hemolytic activity. Less than 12.5 μg/mL of tested agent showed no hemolysis with high significant decrease compared with positive control, which confirms that Hfx-AgNPs are considered non-hemolytic (non-toxic) agents according to the ISO/TR 7405-1984(f) protocol. Thrombolysis activity of Hfx-AgNPs was observed in a concentration-dependent manner. Further, Hfx-AgNPs may be considered a promising lead compound for the pharmacological industry.


2021 ◽  
Author(s):  
Jelena S. Katanić Stanković ◽  
◽  
Nikola Srećković ◽  
Vladimir Mihailović

In this study, silver nanoparticles (AgNPs) have been synthesized using the aqueous extract of the aerial parts of B. purpurocaerulea, collected in Serbia. B. purpurocaerulea silver nanoparticles (Bp– AgNPs) synthesis was confirmed using UV-Vis spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR). The biological potential of synthesized Bp-AgNPs was evaluated in vitro using ABTS assay for determining free radical scavenging potential and microdilution method for analysis of antimicrobial properties. Bp-AgNPs showed high antioxidant activity similar to Bp-extract, comparable to BHT. The synthesized nanoparticles exerted remarkable antibacterial effects, with minimal inhibitory concentration (MIC) values below 20 µg/mL. In the case of some bacterial strains, the results of Bp– AgNPs were comparable or similar to standard antibiotic erythromycin. The antifungal activity of Bp– AgNPs was moderate for most of the used strains. Nevertheless, several fungi were resistant to the NPs action, while two tested Penicillium species were extremely sensitive on Bp-AgNPs with MIC lower than 40 µg/mL. The antimicrobial properties of Bp-AgNPs can be useful for the development of new NPs-containing products.


2018 ◽  
Vol 10 (1) ◽  
pp. 30
Author(s):  
Fabiana Garbachi De Oliveira Mendes Ouri ◽  
Paula Bacaicoa Caruso ◽  
Gabriela Viegas Da Silva ◽  
Henrique Dias ◽  
Juliana Romeu Marques ◽  
...  

<p>Liver fibrosis is a complex disease that is caused by inappropriate tissue repair due to the deposition of connective tissue. When a chronic lesion affects the liver, regenerative response fails and hepatocytes are replaced with abundant extracellular matrix (ECM). The imbalance between production and degradation of ECM will result in the accumulation of proteins that change normal liver architecture, and thus its functionality. The main source of ECM is the activated hepatic stellate cell (HSC). In order, to clarify possible therapeutic approaches to the disease, this work aimed to evaluate the possible antifibrotic action of <em>Pluchea sagitallis </em>(Lam.) Cabrera on an activated HSC immortalized lineage (GRX).</p><p>Our results demonstrated that the <em>P. sagittalis</em> aqueous extract at 0.039 and 0.078 mg/mL concentrations was able to reduce cell growth and proliferation. Regarding to oxidative stress evaluation, there was no statistically significant difference between the treated group and the control. Staining with OilRed-O (ORO) showed a statistically significant increase in intracellular lipid content after 5 days of treatment, exerting <em>in vitro</em> effect on the GRX phenotypic change of activated towards the quiescent state. These results were confirmed by colorimetric quantification of lipid content. Regarding the TGF-β1 and collagen production, there were no statistically significant differences observed between the groups.</p><p>In conclusion, the <em>P. sagittalis</em> aqueous extract reduces the growth and proliferation of GRX cells and induces the reversal of activated towards a quiescent phenotype. There was no decrease in cell proliferation either by necrosis or by apoptosis via activation of the senescence. Thus, our data suggest that the extract showed an antifibrotic effect, possibly by activating phenotype reversal.</p>


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2626
Author(s):  
Wael Sobhy Darwish ◽  
Abada El Sayed Khadr ◽  
Maher Abd El Naby Kamel ◽  
Mabrouk A. Abd Eldaim ◽  
Ibrahim El Tantawy El Sayed ◽  
...  

Ceratonia siliqua (Carob) is an evergreen Mediterranean tree, and carob pods are potentially nutritive and have medicinal value. The present study was carried out to estimate the possible biological activities of phytochemical-characterized carob pod aqueous extract (CPAE). The phytochemical contents of CPAE were determined by using colorimetric methods and HPLC. In addition, the free radical scavenging properties and anti-diabetic, anti-hemolytic, and antimicrobial activities were estimated by using standardized in vitro protocols. The phytochemical analysis revealed that CPAE was rich in polyphenols, flavonoids, and alkaloids, where it contained a significant amount of gallic acid, catechin, and protocatechuic acid. Furthermore, CPAE exhibited strong antioxidant activity where it prevented the formation of 2, 2-Diphenyl-1-picryl hydrazyl, hydroxyl, and nitric oxide free radicals. Additionally, it had a potent inhibitory effect against digestive enzymes (amylase, maltase, sucrase, and lactase). Moreover, CPAE exhibited anti-Staph aureus, anti-Escherichia coli, anti-Candida albicans, and anti-herpes simplex type I virus (HSV-I). Finally, CPAE protected the erythrocyte membrane from hypotonic solution-induced hemolysis. Altogether, CPAE could be regarded as an interesting source of biologically active antioxidant, anti-diabetic, and antimicrobial preparation for a potential application in pharmaceutical and food supplement fields.


Sign in / Sign up

Export Citation Format

Share Document