scholarly journals Identification and validation of key modules and hub genes associated with the pathological stage of oral squamous cell carcinoma by weighted gene co-expression network analysis

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8505 ◽  
Author(s):  
Xuegang Hu ◽  
Guanwen Sun ◽  
Zhiqiang Shi ◽  
Hui Ni ◽  
Shan Jiang

Background Oral squamous cell carcinoma (OSCC) is a major lethal malignant cancer of the head and neck region, yet its molecular mechanisms of tumourigenesis are still unclear. Patients and methods We performed weighted gene co-expression network analysis (WGCNA) on RNA-sequencing data with clinical information obtained from The Cancer Genome Atlas (TCGA) database. The relationship between co-expression modules and clinical traits was investigated by Pearson correlation analysis. Furthermore, the prognostic value and expression level of the hub genes of these modules were validated based on data from the TCGA database and other independent datasets from the Gene Expression Omnibus (GEO) database and the Human Protein Atlas database. The significant modules and hub genes were also assessed by functional analysis and gene set enrichment analysis (GSEA). Results We found that the turquoise module was strongly correlated with pathologic T stage and significantly enriched in critical functions and pathways related to tumourigenesis. PPP1R12B, CFD, CRYAB, FAM189A2 and ANGPTL1 were identified and statistically validated as hub genes in the turquoise module and were closely implicated in the prognosis of OSCC. GSEA indicated that five hub genes were significantly involved in many well-known cancer-related biological functions and signaling pathways. Conclusion In brief, we systematically discovered a co-expressed turquoise module and five hub genes associated with the pathologic T stage for the first time, which provided further insight that WGCNA may reveal the molecular regulatory mechanism involved in the carcinogenesis and progression of OSCC. In addition, the five hub genes may be considered candidate prognostic biomarkers and potential therapeutic targets for the precise early diagnosis, clinical treatment and prognosis of OSCC in the future.

Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Wanli Yang ◽  
Wei Zhou ◽  
Xinhui Zhao ◽  
Xiaoqian Wang ◽  
Lili Duan ◽  
...  

Abstract Background Oral squamous cell carcinoma (OSCC) is a malignant cancer, the survival rate of patients is disappointing. Therefore, it is necessary to identify the driven-genes and prognostic biomarkers in OSCC. Methods Four Gene Expression Omnibus (GEO) datasets were integratedly analyzed using bioinformatics approaches, including identification of differentially expressed genes (DEGs), GO and KEGG analysis, construction of protein-protein interaction (PPI) network, selection of hub genes, analysis of prognostic information and genetic alterations of hub genes. ONCOMINE, The Cancer Genome Atlas (TCGA) and Human Protein Atlas databases were used to evaluate the expression and prognostic value of hub genes. Tumor immunity was assessed to investigate the functions of hub genes. Finally, Cox regression model was performed to construct a multiple-gene prognostic signature. Results Totally 261 genes were found to be dysregulated. 10 genes were considered to be the hub genes. The Kaplan-Meier analysis showed that upregulated SPP1, FN1, CXCL8, BIRC5, PLAUR, and AURKA were related to poor outcomes in OSCC patients. FOXM1 and TPX2 were considered as the potential immunotherapeutic targets with future clinical significance. Moreover, we constructed a nine-gene signature (TEX101, DSG2, SCG5, ADA, BOC, SCARA5, FST, SOCS1, and STC2), which can be utilized to predict prognosis of OSCC patients effectively. Conclusion These findings may provide new clues for exploring the molecular mechanisms and targeted therapy in OSCC. The hub genes and risk gene signature are helpful to the personalized treatment and prognostic judgement.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5944
Author(s):  
Jianfei Tang ◽  
Xiaodan Fang ◽  
Juan Chen ◽  
Haixia Zhang ◽  
Zhangui Tang

Oral squamous cell carcinoma (OSCC) is a type of malignancy with high mortality, leading to poor prognosis worldwide. However, the molecular mechanisms underlying OSCC carcinogenesis have not been fully understood. Recently, the discovery and characterization of long non-coding RNAs (lncRNAs) have revealed their regulatory importance in OSCC. Abnormal expression of lncRNAs has been broadly implicated in the initiation and progress of tumors. In this review, we summarize the functions and molecular mechanisms regarding these lncRNAs in OSCC. In addition, we highlight the crosstalk between lncRNA and tumor microenvironment (TME), and discuss the potential applications of lncRNAs as diagnostic and prognostic tools and therapeutic targets in OSCC. Notably, we also discuss lncRNA-targeted therapeutic techniques including CRISPR-Cas9 as well as immune checkpoint therapies to target lncRNA and the PD-1/PD-L1 axis. Therefore, this review presents the future perspectives of lncRNAs in OSCC therapy, but more research is needed to allow the applications of these findings to the clinic.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Ze-nan Zheng ◽  
Guang-zhao Huang ◽  
Qing-qing Wu ◽  
Heng-yu Ye ◽  
Wei-sen Zeng ◽  
...  

AbstractOral squamous cell carcinoma (OSCC) is the most common oral cancer. The molecular mechanisms of this disease are not fully understood. Our previous studies confirmed that dysregulated function of long non-coding RNA (lncRNA) AC007271.3 was associated with a poor prognosis and overexpression of AC007271.3 promoted cell proliferation, migration, invasion, and inhibited cell apoptosis in vitro, and promoted tumor growth in vivo. However, the underlying mechanisms of AC007271.3 dysregulation remained obscure. In this study, our investigation showed that AC007271.3 functioned as competing endogenous RNA by binding to miR-125b-2-3p and by destabilizing primary miR-125b-2, resulted in the upregulating expression of Slug, which is a direct target of miR-125b-2-3p. Slug also inhibited the expression of E-cadherin but N-cadherin, vimentin, and β-catenin had no obvious change. The expression of AC007271.3 was promoted by the canonical nuclear factor-κB (NF-κB) pathway. Taken together, these results suggested that the classical NF-κB pathway-activated AC007271.3 regulates EMT by miR-125b-2-3p/Slug/E-cadherin axis to promote the development of OSCC, implicating it as a novel potential target for therapeutic intervention in this disease.


ISRN Oncology ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Suttichai Krisanaprakornkit ◽  
Anak Iamaroon

Oral cancer is one of the drastic human cancers due to its aggressiveness and high mortality rate. Of all oral cancers, squamous cell carcinoma is the most common accounting for more than 90%. Epithelial-mesenchymal transition (EMT) is suggested to play an important role during cancer invasion and metastasis. Recently, emerging knowledge on EMT in carcinogenesis is explosive, tempting us to analyze previous studies on EMT in oral squamous cell carcinoma (OSCC). In this paper, we have first addressed the general molecular mechanisms of EMT, evidenced by alterations of cell morphology during EMT, the presence of cadherin switching, turning on and turning off of many specific genes, the activation of various signaling pathways, and so on. The remaining part of this paper will focus on recent findings of the investigations of EMT on OSCC. These include the evidence of EMT taking place in OSCC and the signaling pathways employed by OSCC cells during their invasion and metastasis. Collectively, with the large body of new knowledge on EMT in OSCC elaborated here, we are hopeful that targeting treatment for OSCC will be developed.


2020 ◽  
Author(s):  
Weirui Ren ◽  
Chuang Zhang ◽  
Lei Pan ◽  
Weijing Wang ◽  
Wenjuan Zhao ◽  
...  

Abstract Background: Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers with notably high incidence and mortality rates. However, the molecular mechanism underlying ESCC pathogenesis and prognosis is very complicated. The main objective of our investigation has been to obtain some knowledge of significant genes with poor outcome and their underlying mechanisms.Methods: Gene expression profiles of GSE26886, GSE23400, GSE20347 and GSE17351 were available from GEO database. The differentially expressed genes (DEGs) were identified, and function enrichment analyses were performed. The protein-protein interaction network (PPI) was constructed and the module analysis was performed using STRING and Cytoscape software.Results: A total of 105 DEGs were identified between normal esophagus and ESCC bioinformatical analysis samples. Functional annotations of the common DEGs indicate that extracellular matrix (ECM) remodeling plays a key role in tumor formation and progression.18 hub genes were identified and disease free survival analysis showed that CDKN3, RAD51AP1, KIF4A may be involved in poor prognosis in ESCC patients.Conclusions: DEGs and hub genes identified in the present study help us understand the molecular mechanisms underlying the carcinogenesis and progression of ESCC, and provide candidate targets for diagnosis and treatment of ESCC.


Author(s):  
Yuanhe You ◽  
Zhuowei Tian ◽  
Zhong Du ◽  
Kailiu Wu ◽  
Guisong Xu ◽  
...  

Abstract Background Tumor-associated macrophages (TAMs) have a leading position in the tumor microenvironment. Previously, we have demonstrated that M1-like TAMs activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma (OSCC). However, the functional roles and associated molecular mechanisms of the activated M1-like TAMs need to be further clarified in OSCC. Methods Conditioned Media (CM) were harvested from the exosome activated M1-like TAMs. We measured the malignant behaviors of OSCC under the treatment of CM from M1-like TAMs by performing colony forming assays, invasion assays, wound-healing assays, spheroid forming assays and in vivo xenograft experiments. The underlying mechanisms were investigated by RNA-seq, cytokines analysis, intracellular signaling pathway analysis, ChIP assays, bioinformatics analysis and validation. Results M1-like TAMs significantly promoted the epithelial-mesenchymal transition (EMT) process, and induced the cancer-stem like cells (CSCs) by upregulating the expression of MME and MMP14 in OSCC cells. Cytokine analysis revealed a shark increase of IL6 secretion from M1-like TAMs. Blocking IL6 in the CM from M1-like TAMs could significantly weaken its effects on the colony forming, invasion, migration, microsphere forming and xenograft forming abilities of OSCC cells. Cellular signaling assays indicated the activation of Jak/Stat3 pathway in the OSCC cells treated by the CM from M1-like TAMs. Blocking the activation of the Jak/Stat3 pathway could significantly weaken the effects of M1-like TAMs on the colony forming, invasion, migration, microsphere forming and xenograft forming abilities of OSCC cells. Further RNA-seq analysis and bioinformatics analysis revealed an increased expression of THBS1 in the OSCC cells treated by M1-like TAMs. Bioinformatics prediction and ChIP assays revealed the activation of Stat3 by CM from M1-like TAMs could directly promote the transcription of THBS1 in OSCC cells. Conclusions We proposed that M1-like TAMs could cascade a mesenchymal/stem-like phenotype of OSCC via the IL6/Stat3/THBS1 feedback loop. A better understanding on the functional roles and associated molecular mechanisms of M1-like TAMs might facilitate the development of novel therapies for supplementing the current treatment strategies for OSCC patients.


2020 ◽  
Vol 68 (7) ◽  
pp. 1282-1288
Author(s):  
Hui Li ◽  
Junhong Jiang

Oral squamous cell carcinoma (OSCC) is a lethal malignancy. It is reportedly demonstrated that long non-coding RNA (lncRNA) participates in the development of OSCC. The purpose of this study was to clarify the function and possible molecular mechanisms of lncRNA MCM3AP antisense RNA 1 (lncRNA MCM3AP-AS1) in OSCC. Quantitative real-time PCR (qRT-PCR) was adopted to investigate MCM3AP-AS1 expressions in OSCC tissues and cells. The proliferation, migration and invasion of HN-6 and SCC-9 cells were probed by cell counting kit-8 and Transwell assays, respectively. Dual luciferase reporter gene assay, Pearson’s correlation analysis, qRT-PCR and western blot were used to detect the binding relationship among miR-204-5 p, MCM3AP-AS1 and forkheadbox C1 (FOXC1). MCM3AP-AS1 expression was elevated in OSCC tissues and cell lines. Overexpression of MCM3AP-AS1 facilitated the proliferation, migration and invasion of OSCC cells, while the knockdown of MCM3AP-AS1 suppressed these malignant phenotypes. Besides, MCM3AP-AS1 impeded miR-204-5 p by binding with it. MCM3AP-AS1 could also upregulate the expression of FOXC1 via repressing miR-204-5 p.MCM3AP-AS1 promotes the progression of OSCC cells by adsorbing miR-204-5 p and upregulating FOXC1 expressions.


Sign in / Sign up

Export Citation Format

Share Document