scholarly journals Lake water volume fluctuations in response to climate change in Xinjiang, China from 2002 to 2018

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9683
Author(s):  
Adilai Wufu ◽  
Hongwei Wang ◽  
Yun Chen ◽  
Yusufujiang Rusuli ◽  
Ligang Ma ◽  
...  

Climate change has a global impact on the water cycle and its spatial patterns, and these impacts are more pronounced in eco-fragile regions. Arid regions are significantly affected by human activities like farming, and climate change, which influences lake water volumes, especially in different latitudes. This study integrates radar altimetry data from 2002 to 2018 with optical remote sensing images to analyze changes in the lake areas, levels, and volumes at different altitudes in Xinjiang, China. We analyzed changes in lake volumes in March, June, and October and studied their causes. The results showed large changes in the surface areas, levels, and volumes of lakes at different altitudes. During 2002–2010, the lakes in low- and medium-altitude areas were shrinking but lakes in high altitude areas were expanding. Monthly analysis revealed more diversified results: the lake water levels and volumes tended to decrease in March (−0.10 m/year, 37.55×108 m3) and increase in June (0.03 m/year, 3.48×108 m3) and October (0.04 m/year, 26.90×108 m3). The time series lake water volume data was reconstructed for 2011 to 2018 based on the empirical model and the total lake water volume showed a slightly increasing trend during this period (71.35×108 m3). We hypothesized that changes in lake water at high altitudes were influenced by temperature-induced glacial snow melt and lake water in low- to medium-altitude areas was most influenced by human activities like agricultural irrigation practices.

2021 ◽  
Vol 14 (1) ◽  
pp. 99
Author(s):  
Guoqing Yang ◽  
Miao Zhang ◽  
Zhenghui Xie ◽  
Jiyuan Li ◽  
Mingguo Ma ◽  
...  

Lake Qinghai has shrunk and then expanded over the past few decades. Quantifying the contributions of climate change and human activities to lake variation is important for water resource management and adaptation to climate change. In this study, we calculated the water volume change of Lake Qinghai, analyzed the climate and land use changes in Lake Qinghai catchment, and distinguished the contributions of climate change and local human activities to water volume change. The results showed that lake water volume decreased by 9.48 km3 from 1975 to 2004 and increased by 15.18 km3 from 2005 to 2020. The climate in Lake Qinghai catchment is becoming warmer and more pluvial, and the changes in land use have been minimal. Based on the Soil and Water Assessment Tool (SWAT), land use change, climate change and interaction effect of them contributed to 7.46%, 93.13% and −0.59%, respectively, on the variation in surface runoff into the lake. From the perspective of the water balance, we calculated the proportion of each component flowing into and out of the lake and found that the contribution of climate change to lake water volume change was 97.55%, while the local human activities contribution was only 2.45%. Thus, climate change had the dominant impact on water volume change in Lake Qinghai.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hendri Irwandi ◽  
Mohammad Syamsu Rosid ◽  
Terry Mart

AbstractThis research quantitatively and qualitatively analyzes the factors responsible for the water level variations in Lake Toba, North Sumatra Province, Indonesia. According to several studies carried out from 1993 to 2020, changes in the water level were associated with climate variability, climate change, and human activities. Furthermore, these studies stated that reduced rainfall during the rainy season due to the El Niño Southern Oscillation (ENSO) and the continuous increase in the maximum and average temperatures were some of the effects of climate change in the Lake Toba catchment area. Additionally, human interventions such as industrial activities, population growth, and damage to the surrounding environment of the Lake Toba watershed had significant impacts in terms of decreasing the water level. However, these studies were unable to determine the factor that had the most significant effect, although studies on other lakes worldwide have shown these factors are the main causes of fluctuations or decreases in water levels. A simulation study of Lake Toba's water balance showed the possibility of having a water surplus until the mid-twenty-first century. The input discharge was predicted to be greater than the output; therefore, Lake Toba could be optimized without affecting the future water level. However, the climate projections depicted a different situation, with scenarios predicting the possibility of extreme climate anomalies, demonstrating drier climatic conditions in the future. This review concludes that it is necessary to conduct an in-depth, comprehensive, and systematic study to identify the most dominant factor among the three that is causing the decrease in the Lake Toba water level and to describe the future projected water level.


2020 ◽  
Vol 77 (11) ◽  
pp. 1836-1845
Author(s):  
K. Martin Perales ◽  
Catherine L. Hein ◽  
Noah R. Lottig ◽  
M. Jake Vander Zanden

Climate change is altering hydrologic regimes, with implications for lake water levels. While lakes within lake districts experience the same climate, lakes may exhibit differential climate vulnerability regarding water level response to drought. We took advantage of a recent drought (∼2005–2010) and estimated changes in lake area, water level, and shoreline position on 47 lakes in northern Wisconsin using high-resolution orthoimagery and hypsographic curves. We developed a model predicting water level response to drought to identify characteristics of the most vulnerable lakes in the region, which indicated that low-conductivity seepage lakes found high in the landscape, with little surrounding wetland and highly permeable soils, showed the greatest water level declines. To explore potential changes in the littoral zone, we estimated coarse woody habitat (CWH) loss during the drought and found that drainage lakes lost 0.8% CWH while seepage lakes were disproportionately impacted, with a mean loss of 40% CWH. Characterizing how lakes and lake districts respond to drought will further our understanding of how climate change may alter lake ecology via water level fluctuations.


The Holocene ◽  
2021 ◽  
pp. 095968362110477
Author(s):  
Maofeng He ◽  
Fengxian Bu ◽  
Claudio O Delang ◽  
Jialin Xie ◽  
Quan Ye ◽  
...  

Climate change and human activities have been an important part of studies regarding historical environmental changes in China over the past 2000 years. In this study, we focused on environmental changes, that is, natural disasters and human activities, in the Poyang Lake Basin over the past 2000 years, to analyze interactions between land use cover changes and human activities from the perspective of regional sustainable development. We collected historical records of climate and hydrology, floods and droughts, and rivers and lakes in the Poyang Lake area, and established time sequences for the floods and droughts, lake water level and lake area, amount of farming land, and population, in order to discuss interactions between changes in the environment and the climate, with emphasis on the impacts of extreme events on lake and river basin environment changes. The following results were obtained. First, climate changes in historical periods had wide-ranging and far-reaching impacts on agricultural production, especially disasters caused by climate change. Among the changes in the Poyang Lake basin environment, including river network systems, lake water levels, etc., changes in lake water volume are direct evidence of climate change, adaptation to climate change, and obvious phased characteristics. Second, in the process of changes to the lake and river network in the Poyang Lake Basin, social and economic development is accompanied by evolution of the lake. Increases and decreases in population, the scale of agricultural production, and lake environment changes have direct and significant interactions. Third, the Poyang Lake basin’s environmental changes during the historical period are mainly reflected in the pressure feedback mode of “population–agriculture” in the lake environment.


2021 ◽  
Author(s):  
Julie Collignan ◽  
Jan Polcher ◽  
Pere Quintana Seguí

<p>In a context of climate change, the stakes surrounding water availability and use are getting higher, especially in semi-arid climates. Human activities such as irrigation and land cover changes impact the water cycle, raising questions around the effects it could have on regional atmospheric circulation and how to separate the impact of climate change from the impact of anthropogenic activities to better understand their role in the historical records. The ORCHIDEE Land Surface Model from Institut Pierre Simon Laplace (IPSL) simulates global carbon cycle and aims at quantifying terrestrial water and energy balance. It is being developed at regional scale but does not include satisfying hypothesis to account for human activities such as irrigation at such scale so far.</p><p>We <span>propose</span> a methodology to semi-empirically separate the effect of climate from the impact of the changing catchment characteristics on river discharge. <span>It is based on</span> the Budyko framework and <span>allows to characterise the</span> annual river discharge of over 363 river monitoring stations in Spain. The Budyko parameter is estimated for each basin and <span>represents</span> its hydrological characteristics. Precipitations and potential evapotranspiration are derived from the forcing dataset GSWP3 (Global Soil Wetness Project Phase 3) – from 1901 to 2010 –. Two methods are used to estimate evapotranspiration : the first uses evapotranspiration from the ORCHIDEE LSM outputs while the second deduced evapotranspiration from river discharge observations and the water balance equation. The first method only accounts for the effects of atmospheric forcing while the other combines, through the observations, <span>climatic and non-climatic processes</span> over the watersheds. We then study the evolution over the <span>Budyko</span> parameter fitted with these two <span>estimates of evaporation</span>. Studying the watershed parameter allows us to free ourselves from some of the climate interannual variability compared to directly looking at changes in the river discharge and better separate anthropogenic changes from the effect of climatic forcing.</p><p>Our results show that for most basins tested over Spain, there is an increasing trend in the <span>Budyko parameter representing increasing evaporation efficiency</span> of the watershed which <span>can not be</span> explained by the climate forcing. This trend is consistent with changes in irrigation equipment and land cover changes over the studied period. However changes of the basin characteristics can not be fully quantified by this variables. Other factors as glaciers melting which derails the water balance over our time of study.</p><p>The methodology needs to be extended to other areas such as Northern Europe to see if the differences in response of the catchments to anthropogenic changes quantified by our methodology corresponds to known contrasts. Balance between climatic and anthropogenic changes of basin characteristics are different in semi-arid climate than in northern more humid regions.</p>


Earth ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 272-286
Author(s):  
Sudeep Thakuri ◽  
Furbe Lama ◽  
Rabin Malla ◽  
Nitesh Khadka ◽  
Narayan Prasad Ghimire ◽  
...  

Lake evolution and its changes over time are an evident and easily measurable signal of human activities and climate change impacts in mountain regions. This study presents bathymetric modeling of permanent lakes (Begnas and Rara Lakes) located in two different geographic settings of Nepal. Moreover, temporal changes in land cover and soil erosion of the lake watersheds, as well as climatic trends around these lakes, are assessed. This study supports establishing reference sites for exploring scientific evidence on the impacts of anthropogenic and climate change on lake hydrological systems. Second-order polynomial models best represent the relationship between lake depth and volume. Rara Lake had a maximum depth of 169 m with an area of 10.52 km2 and a volume of 1013.305 million cubic meters (Mm3), whereas Begnas Lake had a maximum depth of 12.5 m with an area of 2.98 ± 0.10 km2 and a water volume of 13.539 Mm3 in the year 2019. Both lake regions are experiencing changes in temperature and rainfall. The area and volume of Rara Lake and its watershed have been relatively stable even with minimal land-cover change during the recent decades. Begnas Lake and its watershed have experienced significant changes in the last few decades. This study concludes that human activities in the Begnas Lake watersheds are the primary source of lake area variation rather than climate change.


2019 ◽  
Author(s):  
Yunliang Li ◽  
Qi Zhang ◽  
Hui Tao ◽  
Jing Yao

Abstract This study outlines a framework for examining potential impacts of future climate change in Poyang Lake water levels using linked models. The catchment hydrological model (WATLAC) was used to simulate river runoffs from a baseline period (1986–2005) and near-future (2020–2035) climate scenarios based on eight global climate models (GCMs). Outputs from the hydrological model combined with the Yangtze River's effects were fed into a lake water-level model, developing in the back-propagation neural network. Model projections indicate that spring–summer water levels of Poyang Lake are expected to increase by 5–25%, and autumn–winter water levels are likely to be lower and decrease by 5–30%, relative to the baseline period. This amounts to higher lake water levels by as much as 2 m in flood seasons and lower water levels in dry seasons in the range of 0.1–1.3 m, indicating that the lake may be wet-get-wetter and dry-get-drier. The probability of occurrence for both the extreme high and low water levels may exhibit obviously increasing trends by up to 5% more than at present, indicating an increased risk in the severity of lake floods and droughts. Projected changes also include possible shifts in the timing and magnitude of the lake water levels.


2020 ◽  
Vol 12 (5) ◽  
pp. 1779 ◽  
Author(s):  
Edwar Forero-Ortiz ◽  
Eduardo Martínez-Gomariz ◽  
Robert Monjo

Barcelona city has a strong dependence on the Ter and Llobregat reservoir system to provide drinking water. One main concern for the next century is a potential water scarcity triggered by a severe and persistent rainfall shortage. This is one of the climate-driven impacts studied within the EU funded project RESCCUE. To evaluate potential drought scenarios, the Hydrologiska Byråns Vattenbalansavdelning (HBV) hydrological model reproduces the water contributions by month that have reached the reservoirs, regarding the accumulated rainfall over each sub-basin, representing the available historical-observed water levels. For future scenarios, we adjusted the input data set using climate projections of rainfall time series data of the project RESCCUE. Local outputs from 9 different climate models were applied to simulate river basins’ responses to reservoirs’ incoming water volume. Analyzing these results, we obtained average trends of the models for each scenario, hypothetical extreme values, and quantification for changes in water availability. Future water availability scenarios for Barcelona central water sources showed a mean decrease close to 11% in comparison with the period 1971–2015, considering the representative concentration pathway 8.5 (RCP8.5) climate change scenario in the year 2100. This research forecasts a slight downward trend in water availability from rainfall contributions from the mid-21st century. This planned future behavior does not mean that the annual water contributions are getting lower than the current ones, but rather, identifies an escalation in the frequency of drought cycles.


2021 ◽  
Author(s):  
Tim van der Schriek ◽  
Christos Giannakopoulos

<p>Ancient lakes throughout the Mediterranean are at risk of disappearing due to a combination of climate change and human impacts. The growing imbalance between water availability and demand is creating unprecedented ecological problems. There is an urgent need for better understanding the patterns of natural lake water variability to improve water resource management and conservation. The incorporation of long-term cycles is particularly important for assessing low frequency – high magnitude trends in lake water levels.</p><p>The Ohrid-Prespa Lake system is amongst the oldest permanent lake systems in Europe, with an age of >1 million years, and hosts a globally significant biodiversity. The closed-basin Prespa Lakes are particularly sensitive to climatic variability with long-term water level changes informing on the dynamic balance between [1] runoff and precipitation supplying water to the lakes, and [2] water loss from the lakes by evaporation and underground karst outflow.</p><p>The large, ongoing, fall of the Prespa Lakes that started in 1987 threatens the biodiversity and water resources of the interconnected lake system. This decline is caused by climate change, specifically by decreases of 10% in precipitation and 25% in runoff, amplified by water abstraction. There is no precedent for this water level fall in the observational record (1951-present), although geological archives indicate equally low water levels at least twice over the past five millennia. </p><p>Here we present the first quantified estimates of changes in the lake water balance over time that are based on the strong relationship between open water surface area and water loss. This quantification allows direct comparison of lake low- and highstand events across time and assessing magnitudes of regional hydro-climatic changes. This study uses a novel approach that reconstructs absolute lake levels and related open water surface areas for different past periods, using the landform-sediment record.</p><p>The hydro-climate of the Prespa catchment shows a drying trend of since the mid Holocene. The recent (2001-2018) lake lowstand is the most significant over the past 700 years in terms of water loss changes. A lake lowstand period of a similar magnitude occurred about 2000 years ago. The most extreme lowstand period over the past 5000 years occurred between 1100-800 years ago during the Medieval Climate Anomaly, when water loss changes were >50% higher compared to the present lowstand. However, the renewed decline in lake level and surface area since 2019 requires close monitoring; if lake level falls a further 2m to 840m.a.s.l. it would become the largest recorded fall over the entire Holocene, with unknown impacts for the wider system.</p><p> </p>


2020 ◽  
Vol 12 (3) ◽  
pp. 944 ◽  
Author(s):  
Ruonan Wang ◽  
Wenqi Peng ◽  
Xiaobo Liu ◽  
Cuiling Jiang ◽  
Wenqiang Wu ◽  
...  

Spatial and temporal variations in hydrological series are affected by both climate change and human activities. A scientific understanding of the impacts of these two main factors on runoff will help to understand the response mechanism of the water cycle in a changing environment. This study focused on Poyang Lake Basin, which contains China’s largest freshwater lake. Several approaches, including the Mann-Kendall trend test, cumulative anomaly method, Hurst exponent analysis, and slope change ratio of cumulative quantity (SCRCQ) method, were adopted to explore the characteristics of runoff variations and the respective impacts of climate change and human activities on runoff variations in the five subbasins. The results indicated that (1) from 1961 to 2015, the runoff throughout the basin fluctuated, and it decreased significantly in the 2000s. (2) Different baseline periods and measurement periods were identified for each subbasin to analyse the spatial and temporal responses of runoff to climate change and human activities. (3) The runoff of each subbasin will exhibit anti-persistent features with different persistence times in the future. (4) Compared with those in the baseline period, in the first measurement period, precipitation was the main factor driving the runoff increase in the Ganjiang, Fuhe, Xinjiang and Raohe subbasins, with contribution rates of 50.91–63.47%, and human activities played a supplementary role. However, in the second measurement period, as human activities intensified, they became the leading factor causing changes in runoff, with contribution rates between 59.57% and 92.49%. Considering water shortages and the intensification of human activities, the impacts of human activities on runoff variations will require more attention in the future.


Sign in / Sign up

Export Citation Format

Share Document