scholarly journals Severe Acute Respiratory Syndrome Coronavirus-2 Antibody Responses in Hospitalized Patients with Coronavirus Disease 2019 in Daegu, Korea

2021 ◽  
Vol 67 (11/2021) ◽  
Author(s):  
Yu Kim ◽  
Dohsik Minn ◽  
Eun-Hyung Yoo ◽  
Mikyoung Park ◽  
Jae Lee ◽  
...  
2020 ◽  
Author(s):  
Yu Kyung Kim ◽  
Dohsik Minn ◽  
Eun-Hyung Yoo ◽  
Mikyoung Park ◽  
Jae Hee Lee ◽  
...  

Abstract Background: Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) started to spread in Daegu from the end of February 2020. IgG and IgM antibodies against SARS-CoV-2 were measured in hospitalized patients with COVID-19 with moderate to severe symptoms to improve the understanding of antibody responses.Methods: We enrolled 312 patients with COVID-19 admitted to seven hospitals located in Daegu. Using serum (or plasma) samples from patients with polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infections, both IgG and IgM antibodies were measured using commercial enzyme-linked immunosorbent assay (R-FIND COVID-19 ELISA, SG medical, Seoul, Korea). Results: The median value from the initial diagnosis by confirming SARS-CoV-2 PCR to the sampling date was 24 days (day -1 to 88). The total positive rate of IgG was 93.9% and the positive IgM rate was 39.4%, without considering the elapsed period after diagnosis. Positive IgG and IgM rates were highest at 100.0% and 59.0% in 3 weeks (15–21 days), respectively. IgG showed a high positive rate of 79.3% even within 7 days after the initial diagnosis of the disease and maintained a positive rate of 97.8% until after 8 weeks. Conclusions: Among hospitalized patients with COVID-19, IgG was detected from the beginning of the diagnosis and persisted for an extended time period.


2021 ◽  
Author(s):  
Jira Chansaenroj ◽  
Ritthideach Yorsaeng ◽  
Nasamon Wanlapakorn ◽  
Chintana Chirathaworn ◽  
Natthinee Sudhinaraset ◽  
...  

Abstract Understanding antibody responses after natural severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can guide the coronavirus disease 2019 (COVID-19) vaccine schedule. This study aimed to assess the dynamics of SARS-CoV-2 antibodies, including anti-spike protein 1 (S1) immunoglobulin (Ig)G, anti-receptor-binding domain (RBD) total Ig, anti-S1 IgA, and neutralizing antibody against wild-type SARS-CoV-2 in a cohort of patients who were previously infected with SARS-CoV-2. Between March and May 2020, 531 individuals with virologically confirmed cases of SARS-CoV-2 infection were enrolled in our immunological study. The neutralizing titers against SARS-CoV-2 were detected in 95.2%, 86.7%, 85.0%, and 85.4% of recovered COVID-19 patients at 3, 6, 9, and 12 months after symptom onset, respectively. The seropositivity rate of anti-S1 IgG, anti-RBD total Ig, anti-S1 IgA, and neutralizing titers remained at 68.6%, 89.6%, 77.1%, and 85.4%, respectively, at 12 months after symptom onset. The half-life of neutralizing titers was estimated at 100.7 days (95% confidence interval = 44.5 – 327.4 days, R2 = 0.106). These results support that the decline in serum antibody levels over time depends on the symptom severity, and the individuals with high IgG antibody titers experienced a significantly longer persistence of SARS-CoV-2-specific antibody responses than those with lower titers.


Science ◽  
2020 ◽  
Vol 369 (6506) ◽  
pp. 956-963 ◽  
Author(s):  
Thomas F. Rogers ◽  
Fangzhu Zhao ◽  
Deli Huang ◽  
Nathan Beutler ◽  
Alison Burns ◽  
...  

Countermeasures to prevent and treat coronavirus disease 2019 (COVID-19) are a global health priority. We enrolled a cohort of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)–recovered participants, developed neutralization assays to investigate antibody responses, adapted our high-throughput antibody generation pipeline to rapidly screen more than 1800 antibodies, and established an animal model to test protection. We isolated potent neutralizing antibodies (nAbs) to two epitopes on the receptor binding domain (RBD) and to distinct non-RBD epitopes on the spike (S) protein. As indicated by maintained weight and low lung viral titers in treated animals, the passive transfer of a nAb provides protection against disease in high-dose SARS-CoV-2 challenge in Syrian hamsters. The study suggests a role for nAbs in prophylaxis, and potentially therapy, of COVID-19. The nAbs also define protective epitopes to guide vaccine design.


2020 ◽  
Vol 71 (16) ◽  
pp. 2255-2258 ◽  
Author(s):  
Jiuxin Qu ◽  
Chi Wu ◽  
Xiaoyong Li ◽  
Guobin Zhang ◽  
Zhaofang Jiang ◽  
...  

Abstract We profiled the serological responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) protein and spike (S) glycoprotein. The majority of the patients developed robust antibody responses between 17 and 23 days after illness onset. Delayed, but stronger, antibody responses were observed in critical patients.


2020 ◽  
pp. eabf1555 ◽  
Author(s):  
Zijun Wang ◽  
Julio C. C. Lorenzi ◽  
Frauke Muecksch ◽  
Shlomo Finkin ◽  
Charlotte Viant ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), primarily infects cells at mucosal surfaces. Serum neutralizing antibody responses are variable and generally low in individuals that suffer mild forms of COVID-19. Although potent IgG antibodies can neutralize the virus, less is known about secretory antibodies such as IgA that might impact the initial viral spread and transmissibility from the mucosa. Here we characterize the IgA response to SARS-CoV-2 in a cohort of 149 convalescent individuals following diagnosis with COVID-19. IgA responses in plasma generally correlated with IgG responses. Further, clones of IgM-, IgG-, and IgA-producing B cells were derived from common progenitor cells. Plasma IgA monomers specific to SARS-CoV-2 proteins were demonstrated to be two-fold less potent than IgG equivalents. However, IgA dimers, the primary form of antibody in the nasopharynx, were on average fifteen times more potent than IgA monomers against the same target. Thus, dimeric IgA responses may be particularly valuable for protection against SARS-CoV-2 and for vaccine efficacy.


2004 ◽  
Vol 53 (5) ◽  
pp. 435-438 ◽  
Author(s):  
Weijun Chen ◽  
Zuyuan Xu ◽  
Jingsong Mu ◽  
Ling Yang ◽  
Haixue Gan ◽  
...  

To understand the time-course of viraemia and antibody responses to severe acute respiratory syndrome-associated coronavirus (SARS-CoV), RT-PCR and ELISA were used to assay 376 blood samples from 135 SARS patients at various stages of the illness, including samples from patients who were in their early convalescent phase. The results showed that IgM antibodies decreased and became undetectable 11 weeks into the recovery phase. IgG antibodies, however, remained detectable for a period beyond 11 weeks and were found in 100 % of patients in the early convalescent phase. SARS-CoV viraemia mainly appeared 1 week after the onset of illness and then decreased over a period of 1 month, becoming undetectable in the blood samples of the convalescent patients. At the peak of viraemia, viral RNA was detectable in 75 % of blood samples from patients who were clinically diagnosed with SARS 1 or 2 weeks before the test.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thomas W. McDade ◽  
Alexis R. Demonbreun ◽  
Amelia Sancilio ◽  
Brian Mustanski ◽  
Richard T. D’Aquila ◽  
...  

AbstractTwo-dose messenger RNA vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective in preventing symptomatic COVID-19 infection. However, the durability of protection is not known, nor is the effectiveness against emerging viral variants. Additionally, vaccine responses may differ based on prior SARS-CoV-2 exposure history. To investigate protection against SARS-CoV-2 variants we measured binding and neutralizing antibody responses following both vaccine doses. We document significant declines in antibody levels three months post-vaccination, and reduced neutralization of emerging variants, highlighting the need to identify correlates of clinical protection to inform the timing of and indications for booster vaccination.


2021 ◽  
Author(s):  
Kevin W. Ng ◽  
Nikhil Faulkner ◽  
Katja Finsterbusch ◽  
Mary Wu ◽  
Ruth Harvey ◽  
...  

AbstractSeveral common-cold coronaviruses (HCoVs) are endemic in humans and several variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged during the current Coronavirus disease 2019 (COVID-19) pandemic. Whilst antibody cross-reactivity with the Spike glycoproteins (S) of diverse coronaviruses has been documented, it remains unclear whether such antibody responses, typically targeting the conserved S2 subunit, contribute to or mediate protection, when induced naturally or through vaccination. Using a mouse model, we show that prior HCoV-OC43 S immunity primes neutralising antibody responses to otherwise subimmunogenic SARS-CoV-2 S exposure and promotes S2-targeting antibody responses. Moreover, mouse vaccination with SARS-CoV-2 S2 elicits antibodies that neutralise diverse animal and human alphacoronaviruses and betacoronaviruses in vitro, and protects against SARS-CoV-2 challenge in vivo. Lastly, in mice with a history of SARS-CoV-2 Wuhan-based S vaccination, further S2 vaccination induces stronger and broader neutralising antibody response than booster Wuhan S vaccination, suggesting it may prevent repertoire focusing caused by repeated homologous vaccination. The data presented here establish the protective value of an S2-targeting vaccine and support the notion that S2 vaccination may better prepare the immune system to respond to the changing nature of the S1 subunit in SARS-CoV-2 variants of concern (VOCs), as well as to unpredictable, yet inevitable future coronavirus zoonoses.


2020 ◽  
Author(s):  
Christos Fotis ◽  
Nikolaos Meimetis ◽  
Nikos Tsolakos ◽  
Marianna Politou ◽  
Karolina Akinosoglou ◽  
...  

AbstractThere is a plethora of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) serological tests based either on nucleocapsid phosphoprotein (N), S1-subunit of spike glycoprotein (S1) or receptor binding domain (RBD). Although these single-antigen based tests demonstrate high clinical performance, there is growing evidence regarding their limitations in epidemiological serosurveys. To address this, we developed a Luminex-based multiplex immunoassay that detects total antibodies (IgG/IgM/IgA) against the N, S1 and RBD antigens and used it to compare antibody responses in 1,225 blood donors across Greece. Seroprevalence based on single-antigen readouts was strongly influenced by both the antigen type and cut-off value and ranged widely [0.8% (95% CI, 0.4-1.5%)-7.5% (95% CI, 6.0-8.9%)]. A multi-antigen approach requiring partial agreement between RBD and N or S1 readouts (RBD&N|S1 rule) was less affected by cut-off selection, resulting in robust seroprevalence estimation [0.6% (95% CI, 0.3-1.1%)-1.2% (95% CI, 0.7-2.0%)] and accurate identification of seroconverted individuals.


Sign in / Sign up

Export Citation Format

Share Document