scholarly journals Seismic Performance of Beam-to-column Weak-axis Moment Connection of Small-size Steel Structure

2017 ◽  
Vol 29 (2) ◽  
pp. 169-180 ◽  
Author(s):  
Woo-Young Lim ◽  
Young-Chan You
2011 ◽  
Vol 243-249 ◽  
pp. 1435-1438 ◽  
Author(s):  
Ming Chen ◽  
Yang Sun ◽  
Bing Qian Pi

The double C steel section is made of two C steels with gusset plate through bolts. A ridge joint of double C steel is studied through experiment under cyclic loading in this paper. Through the four specimens with different gusset-plate’s thickness and bolt spacing, we analyze the effect of the gusset-plate’s thickness and bolt spacing on stiffness, ductility and energy performance. At last we recommend the suitable gusset-plate’s thickness. The results can give a reference to the engineering application of cold-formed steel structure.


Author(s):  
Brian H. H. Peng ◽  
Gregory A. MacRae ◽  
Warren R. Walpole ◽  
Peter Moss ◽  
Rajesh Dhakal ◽  
...  

Several steel structure standards around the world contain an equation to encourage any column flexural yielding during earthquake shaking to occur at the column ends, rather than along the column length. The accuracy of these equations and their applicability to columns of both moment frames and braced frames are examined in this paper. It is shown, using an analytical procedure developed from first principles considering the reduction in member stiffness from axial force due to geometric and material nonlinearity, that the existing code equations are conservative. Less conservative empirical equations are developed based on the analysis results. It is found that these equations are applicable to frames with a braced connection, rather than a moment connection into the column. Time-history analysis of eccentrically-braced frames with inverted V-bracing, where the active link occurs at the centre of the beam, is carried out. The likely column end moment ratio needed for the new equations is determined. The analysis also shows that yielding often did not occur in the bottom story columns during earthquake excitations. A simple check is proposed to relate the axial force limit and the design drift to flexural yielding of columns which can be used in conjunction with the proposed equations.


2014 ◽  
Vol 14 (03) ◽  
pp. 1350070 ◽  
Author(s):  
Z. Zhou ◽  
J. Wu ◽  
S. Meng

This paper focuses on the effect of member geometric imperfection on nonlinear geometrically buckling and seismic performance of a new style of space steel structure, suspen-dome, which is composed of a reticulated shell and cable-strut system. By supposing the initial curvature of members as half-wave sinusoids, a stiffness equation of imperfect truss elements is derived for the struts, while that of imperfect beam elements is derived for the reticulated shell members. The proposed imperfect elements are implanted into ANSYS finite element program. Three numerical examples are employed to validate the proposed imperfect elements and analysis method. An ellipsoidal suspen-dome of Changzhou gymnasium is taken as an example. The results show that the imperfection value has relatively great influence on the structural stiffness. With the increase of member imperfection, the critical load decreases in a basically linear way. Under different prestress states, the relation curves between the critical load and imperfection are basically parallel. The nonlinear seismic analysis results show that when imperfection is included, the initial state responses are different, namely, the seismic displacement increases while the stress in rods and cables decreases. The proposed imperfection analysis method can be widely used in not only suspen-dome structures, but also other kinds of prestressed space grid structures. In this way, the influence of member imperfection on structural buckling and seismic performance can be estimated.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Yun Shi ◽  
Yumin Zhang ◽  
Jianbo Dai ◽  
Guangyuan Weng

Based on the advantages of modular prefabricated multistory steel structure, a full-bolt-connected modular steel coupling beam-hybrid coupled wall system is presented. Further, a method of estimating the coupling ratio (CR) is proposed according to the continuous link method. A CR-based seismic design procedure is determined such that the structure utilizes the lateral stiffness of the shear wall, which is necessary to avoid structural damage under frequently occurring earthquakes. However, it also exhibits excellent ductility of the coupling beams, which is necessary for dissipating energy under infrequent earthquakes. Subsequently, nonlinear hysteretic analyses are conducted from finite element analysis software ABAQUS, and a parametric study based on the finite element technique is performed to identify the optimal value of the coupling ratio. Results indicate that the seismic performance of modular prefabricated HCWs was excellent, and the basic requirements for ductile behavior and lateral stiffness were satisfied for CR values from 50% to 60%. The obtained results confirm the accuracy of the CR-based seismic design method proposed in this study and are supported by the selection of the design parameter at the initial design stage.


2020 ◽  
Vol 146 (10) ◽  
pp. 04020108
Author(s):  
Ping Xiang ◽  
Ruihong Xie ◽  
Zhuofeng Li ◽  
Liang-jiu Jia ◽  
Jiangyue Xie

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4142 ◽  
Author(s):  
Jinjie Men ◽  
Guanlei Fan ◽  
Tao Lan ◽  
Jiachen Wang ◽  
Liquan Xiong

The box-plate steel structure residence is a box structure with stiffened steel plates directly used as load-bearing walls and floors. In practical engineering, due to the functional requirements of the building, it is necessary to open door or window openings on the box-plate steel structure walls. To study the seismic performance of the box-plate steel structure with openings system, two three-story single-compartment box-plate steel structures with openings modular units were designed and fabricated according to the 1:3 reduced scale. Through the quasi-static loading test, numerical simulation, and theoretical analysis, the failure process, failure mode, lateral force resistant capacity, and hysteresis performance of the specimens were studied. The impact of the different opening areas and opening position on the seismic performance of the box-plate steel structure was emphatically analyzed. The results of the test indicated that the openings on the steel wall plate would reduce the initial stiffness and the lateral force resistant capacity of the specimen; the destruction of the box-plate steel structure with openings modular unit under the low cyclic loading effect started with the tear in the corner of the openings and ended with the tear in the corner steel wall plate. Then, the finite element analysis (FEA) models were developed to supplement the experimental study, and the comparisons were made between measured and simulated results on load versus displacement relationships and failure modes. On the basis of the stressing mechanism of the box-plate structure modular unit, the calculation equation of the lateral force resistant capacity of the box-plate structure with openings modular unit was put forward. Then, the proved finite element analysis (FEA) models were used for parameter analysis of different influence parameters to verify the proposed calculation equation. The results showed that the proposed calculation equation had high accuracy and could be used as a design basis for practical engineering.


2011 ◽  
Vol 250-253 ◽  
pp. 3305-3308
Author(s):  
Yong Yao ◽  
Yun Peng Chu ◽  
Li Wang ◽  
Rui Zhao

Cold-formed steel structure is suitable for post-earthquake reconstruction since its good seismic performance and construction speed. Analyzing the dynamic characteristic of a two story office building by using the finite element software ANSYS. And the results show that: (1) in the time history analysis based on three types of seismic waves the lateral displacement of the structure and rotation between layers to meet the relevant specifications when confront the rare earthquake (2) Under the seismic loads, earthquake response acceleration amplification factor is smaller which indicating better seismic performance and it can be used in areas with high seismic intensity.


2018 ◽  
Vol 763 ◽  
pp. 884-891
Author(s):  
Ryohei Narui ◽  
Kazuhisa Koyano ◽  
Mitsumasa Midorikawa ◽  
Tadao Nakagomi ◽  
Mamoru Iwata

The authors have continuously studied buckling-restrained braces using steel mortar planks (BRBSM). The performance of energy absorption and fatigue against cyclic loading has been evaluated. Although past studies have clarified the structural performance of BRBSM as single member, it is necessary to study not only the performance of BRBSM as single member but also the performance of BRBSM installed in a building structure. In this paper, a frame model of mid-rise steel structure with BRBSM subjected to earthquake motions with various characteristics is analyzed. Comparing the results of the analysis and the past tests, the seismic behavior of a structure is discussed. Especially, the seismic performance of BRBSM installed in the building structure is evaluated. In addition, the seismic performance of two types of BRBSM; basic and developed high-performance types, is compared and evaluated about cumulative plastic strain energy ratio and cumulative fatigue. As a result, the performance capacities of the both types of BRBSM exceed the required values of BRBSM under severe earthquake motions about cumulative plastic strain energy ratio and cumulative fatigue. The basic-type BRBSM has the fatigue capacity against 2 to 5 times severe earthquake motions. The required values of high-performance-type BRBSM are about a half of accumulated fatigue capacity compared with the basic-type one. The high-performance-type BRBSM is applicable against quite many cyclic loadings of low strain amplitude, and able to be used for long-term service.


Sign in / Sign up

Export Citation Format

Share Document