scholarly journals A REVIEW ON PRONIOSOMES: A PRO-COLLOIDAL PARTICULATE DRUG CARRIER

2020 ◽  
Vol 11 (6) ◽  
pp. 119-130
Author(s):  
P V Swamy ◽  
Ch Sucharitha ◽  
G Surendra Babu

Colloidal particulate carrier systems are the systems which carry particulates in a nanometre size. These systems are substantially effective for transportation and distribution of variety of loaded drugs to desired site and increase efficacy and decrease toxicity, to provide therapeutic activity in a controlled manner for a prolonged period of time. One such new emerging colloidal systems is proniosomes which has capacity to improve the bioavailability and also permeation of drugs across the stratum corneum to provide a controlled release action and reduce toxic effects associated with drugs. These are the dry formulations of water-soluble non-ionic surfactant coated carrier systems which immediately on hydration form niosomes. They have the capacity to overcome the various problems associated with niosomes and liposomes, like instability, transportation, distribution, storage and dosing. They offer versatile drug delivery concept for both hydrophilic and hydrophobic drugs. They have the capacity to deliver drugs effectively through different routes at specific site to achieve controlled release action. This review concentrates on preparation, characterization, components, structure, types, evaluation parameters, proniosomes in drug delivery and targeting, toxicities associated with proniosomes, proniosomes versus niosomes, clinical applications, mechanism of vesicle formation in proniosomes and future trends associated with it. Also, drug delivery via different routes, such as oral, parenteral, topical and transdermal, ocular, vaginal, mucosal, pulmonary and intranasal were discussed.

2003 ◽  
Vol 51 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Masako Kajihara ◽  
Toshihiko Sugie ◽  
Hiroo Maeda ◽  
Akihiko Sano ◽  
Keiji Fujioka ◽  
...  

Author(s):  
Sreeja C Nair ◽  
Karthika Ramesh ◽  
Krishnapriya M ◽  
Asha Paul

ABSTRACTObjective: The objective behind our study is that a mucoadhesive rectal hydrogel chitosan sodium alginate carbamazepine (CBZ) microspheres forthe purpose of controlled release for the treatment of epilepsy to avoid the possible side effects.Methods: The study was conducted to formulate controlled release chitosan sodium alginate CBZ microspheres with the dispersion of CBZ into thenatural polymers chitosan and sodium alginate forming microspheres conducting along with their evaluation studies.Results: The formulated microspheres were subjected to various evaluation parameters, and all the physical parameters examined are within theacceptable limits. Further, the optimized microsphere formulation (CM5) was characterized. Hence, the developed optimized microsphere formulation(CM5) seems to be a viable substitute to conventional drug delivery system for the effective management of epilepsy.Conclusion: The prepared formulation also provides a desired CBZ loaded sodium alginate microspheres with the controlled release drug delivery.Keywords: Carbamazepine, Sodium alginate microspheres, Particle size.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1274 ◽  
Author(s):  
Wang ◽  
Zhao ◽  
Gao ◽  
Xu ◽  
Wang ◽  
...  

Multifunctional nanomaterials for bioprobe and drug carrier have drawn great attention for their applications in the early monitoring the progression and treatment of cancers. In this work, we have developed new multifunctional water-soluble NaLnF4@MOF-Ln nanocomposites with dual-mode luminescence, which is based on stokes luminescent mesoporous lanthanide metal–organic frameworks (MOFs-Y:Eu3+) and anti-stokes luminescent NaYF4:Tm3+/Yb3+ nanoparticles. The fluorescence mechanism and dynamics are investigated and the applications of these nanocomposites as bioprobes and drug carriers in the cancer imaging and treatment are explored. Our results demonstrate that these nanocomposites with the excellent two-color emission show great potential in drug delivery, cancer cell imaging, and treatment, which are attributed to the unique spatial structure and good biocompatibility characteristics of NaLnF4@MOF-Ln nanocomposites.


Author(s):  
Dhulipalla Mounika ◽  
I. Deepika Reddy ◽  
K. Sai Chandralekha ◽  
Kapu Harika ◽  
Ramarao Nadendla ◽  
...  

Oral drug delivery is the most widely utilized route of administration among all the routes that have been explored for systemic delivery of drugs via pharmaceutical products of different dosage form. Oral route is considered most natural, uncomplicated, convenient and safe due to its ease of administration, patient acceptance and cost-effective manufacturing process. Gastroretentive drug delivery system was developed in pharmacy field and drug retention for a prolonged time has been achieved. The goal of this study was to formulate and in-vitro evaluate Ciprofloxacin HCl controlled release matrix floating tablets. Ciprofloxacin HCl floating matrix tablets were prepared by wet granulation method using two polymers such as HPMC K100M (hydrophilic polymer) and HPMC K15M. All the Evaluation parameters were within the acceptable limits. FTIR spectral analysis showed that there was no interaction between the drug and polymers. In-vitro dissolution study was carried out using USP dissolution test apparatus (paddle type) at 50 rpm. The test was carried out at 37 ± 0.5 0C in 900ml of the 0.1 N HCl buffer as the medium for eight hours. HPMC K100M shows a prolonged release when compared to HPMC K15M. These findings indicated that HPMC K100M can be used to develop novel gastroretentive controlled release drug delivery systems with the double advantage of controlled drug release at GIT pH. On comparing the major criteria in evaluation such as preformulation and in vitro drug release characteristics, the formulation F8 was selected as the best formulation, as it showed the drug content as 99±0.4% and swelling index ratio was 107.14, and in-vitro drug released 61.31±0.65% up to 8 hours. Results indicated that controlled Ciprofloxacin HCl release was directly proportional to the concentration of HPMC K100M and the release of drug followed non-Fickian diffusion. Based on all the above evaluation parameters it was concluded that the formulation batch F8 was found to be best formulation among the formulations F1 to F8 were prepared.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Chiara Dianzani ◽  
Gian Paolo Zara ◽  
Giovanni Maina ◽  
Piergiorgio Pettazzoni ◽  
Stefania Pizzimenti ◽  
...  

Nanotechnology involves the engineering of functional systems at nanoscale, thus being attractive for disciplines ranging from materials science to biomedicine. One of the most active research areas of the nanotechnology is nanomedicine, which applies nanotechnology to highly specific medical interventions for prevention, diagnosis, and treatment of diseases, including cancer disease. Over the past two decades, the rapid developments in nanotechnology have allowed the incorporation of multiple therapeutic, sensing, and targeting agents into nanoparticles, for detection, prevention, and treatment of cancer diseases. Nanoparticles offer many advantages as drug carrier systems since they can improve the solubility of poorly water-soluble drugs, modify pharmacokinetics, increase drug half-life by reducing immunogenicity, improve bioavailability, and diminish drug metabolism. They can also enable a tunable release of therapeutic compounds and the simultaneous delivery of two or more drugs for combination therapy. In this review, we discuss the recent advances in the use of different types of nanoparticles for systemic and topical drug delivery in the treatment of skin cancer. In particular, the progress in the treatment with nanocarriers of basal cell carcinoma, squamous cell carcinoma, and melanoma has been reported.


2013 ◽  
Vol 334-335 ◽  
pp. 387-396
Author(s):  
Matejka Turel ◽  
Tinkara Mastnak ◽  
Aleksandra Lobnik

Because of their size and versatile chemistry, nanomaterials represent today powerful tools for (bio) sensing applications. Various types of nanomaterials have proven to be practical, not only for the determination of clinically relevant parameters, but also for diagnostics, drug delivery and treatment of diseases (e.g. cancer). In this short review, types of nanomaterials used in medical applications are briefly described along with some of their applications where the nanomaterials optical properties can be exploited. The question of the toxicity of nanomaterials and the issue of future trends are also raised.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Durga Bhavani G ◽  
Veera Lakshmi P

Abstract Background Hepatic first-pass metabolism and poor therapeutic efficiency at targeted region are the endemic problems of new drug molecules. Thus, comprehensive research has been carried out on the novel vesicular drug delivery systems in nanotechnology from the last few years. These nano-carrier systems have developed to overcome the limitations that are associated with hepatic first-pass metabolism in conventional oral dosage forms and the barrier properties of the lipid bilayer in stratum corneum via transdermal drug delivery for improving the bioavailability of various drugs. Main body In recent years, several targeted vesicular drug delivery carriers are developing like liposomes, niosomes, proniosomes, transferosomes, ethosomes, and electrosomes. Among them, niosomes and proniosomes are to be better carriers to increase therapeutic efficiency and bioavailability by reducing the side effects and acting as a promising approach for transdermal drug delivery. Both are non-ionic surfactant-based vesicles and are amphiphilic. This article concisely reviews the possible mechanisms within niosomes and pronisomes to enhance transdermal drug delivery, types, composition, preparation techniques, characterizations, and its applications. Conclusion As per the researches done in the formulation of various nano-carrier systems through transdermal approach for the enhancement of bioavailability, it can be stated that the hepatic first pass metabolism can be reduced as well as therapeutic efficiency can be increased by many folds compared to their oral marketed formulations.


Sign in / Sign up

Export Citation Format

Share Document