THE BIOS PROJECT—FRONTIER OIL SPILL COUNTERMEASURES RESEARCH

1981 ◽  
Vol 1981 (1) ◽  
pp. 167-172 ◽  
Author(s):  
Peter J. Blackall ◽  
Gary A. Sergy

ABSTRACT After 18 months of planning, the Baffin Island Oil Spill (BIOS) Project was formally initiated in March 1980. This project marks a major new initiative in oil spill countermeasures development for Canada's northern frontiers. The primary objectives of this internationally funded project are (1) to determine if the use of chemical dispersants in the Arctic nearshore will reduce or increase the environmental effects of spilled oil, (2) to assess the fate of oil, and (3) to compare the relative effectiveness of other shoreline protection and cleanup techniques. This paper outlines the background and scope of the 4-year project and provides an overview of the first field season's results. Highlighted are the preliminary oil discharges, which took place in August 1980, and which marked the start of studies on the long-term fate of oil on Arctic beaches. In addition, the results of the baseline physical, chemical, and biological studies are presented. The physical program included detailed oceanographic, meteorological, and geomorphological studies. The chemical program determined the background hydrocarbon concentrations in the sediments, the water column, and the tissue of selected macrobenthic species; and also the environmental chemistry of the study area. The biological program characterized the macrobenthic flora and fauna and the micro-organisms that are potentially capable of biodegrading the oil. The physical, chemical, and toxicological properties of the oil were measured in laboratories and in the field. The ramifications of these results on the design of the oil spills scheduled for 1981 are discussed.

1983 ◽  
Vol 1983 (1) ◽  
pp. 451-455 ◽  
Author(s):  
Peter J. Blackall ◽  
Gary A. Sergy

ABSTRACT The Baffin Island Oil Spill (BIOS) Project, formally begun in March 1980, now is entering the fourth and final year of the planned field work. The primary objectives of this internationally funded project are to: (1) determine if the use of chemical dispersants in the arctic nearshore will reduce or increase the environmental effects of spilled oil, (2) assess the fate of oil, and (3) compare the relative effectiveness of other shoreline protection and cleanup techniques. This paper provides an overview of studies sponsored by the BIOS Project during the first three field seasons. Highlighted are the major oil releases which involved a total of 40 cubic meters of medium gravity crude oil. In addition, the preliminary results of the pre- and post-spill physical, chemical, and biological studies are presented. The physical program studies predicted the proper time and location for the oil releases and monitored the subsequent physical fate and behavior of the oil. The chemical program studies monitored the pre- and post-spill hydrocarbon levels in the water, sediments, and tissue of selected macrobenthic species, and also the environmental chemistry of the study area. The biological program studies to date have characterized the macrobenthic flora and fauna, the microorganisms, and the shorter-term effects of the oil releases on the subtidal biota. The potential ramifications of the BIOS Project's results on future oil spill countermeasure strategies are discussed.


Polar Biology ◽  
2021 ◽  
Vol 44 (3) ◽  
pp. 575-586
Author(s):  
Pepijn De Vries ◽  
Jacqueline Tamis ◽  
Jasmine Nahrgang ◽  
Marianne Frantzen ◽  
Robbert Jak ◽  
...  

AbstractIn order to assess the potential impact from oil spills and decide the optimal response actions, prediction of population level effects of key resources is crucial. These assessments are usually based on acute toxicity data combined with precautionary assumptions because chronic data are often lacking. To better understand the consequences of applying precautionary approaches, two approaches for assessing population level effects on the Arctic keystone species polar cod (Boreogadus saida) were compared: a precautionary approach, where all exposed individuals die when exposed above a defined threshold concentration, and a refined (full-dose-response) approach. A matrix model was used to assess the population recovery duration of scenarios with various but constant exposure concentrations, durations and temperatures. The difference between the two approaches was largest for exposures with relatively low concentrations and short durations. Here, the recovery duration for the refined approach was less than eight times that found for the precautionary approach. Quantifying these differences helps to understand the consequences of precautionary assumptions applied to environmental risk assessment used in oil spill response decision making and it can feed into the discussion about the need for more chronic toxicity testing. An elasticity analysis of our model identified embryo and larval survival as crucial processes in the life cycle of polar cod and the impact assessment of oil spills on its population.


1993 ◽  
Vol 1993 (1) ◽  
pp. 583-590 ◽  
Author(s):  
J. M. Baker ◽  
D. I. Little ◽  
E. H. Owens

ABSTRACT Oil spill research and development has involved a large number of experiments to evaluate the effectiveness and the effects of marine shoreline protection and cleanup techniques. Considerable knowledge has accumulated from laboratory and wave tank studies, and there have also been a number of field experiments, in which oil was intentionally spilled on shorelines under controlled conditions. This review summarizes those field experiments, which are grouped in five major habitat types: rocky intertidal, cobble/pebble/gravel, sand/mud, saltmarshes, and mangroves/seagrasses. Tables included in the paper itemize the oil type and volume, location and substrate character, number and size of plots, response techniques tested, and referenced publications. This information is then used to combine understanding of the effectiveness of cleanup with understanding of the ecological effects of cleanup methods, compared with those of untreated oil. It is very difficult to achieve this type of information and understanding from toxicity testing or from spills of opportunity.


2005 ◽  
Vol 2005 (1) ◽  
pp. 161-165
Author(s):  
Carl Jochums ◽  
Glen Watabyashi ◽  
Heather Parker-Hall

ABSTRACT California has initiated a new approach to create an objective standard and regulate best achievable protection (BAP) for sensitive shoreline protection from vessel spills. The Oil Pollution Act (OPA 90) and California's Lempert-Keene-Seastrand Oil Spill Prevention and Response Act (SB 2040) mandate BAP as the standard for preparedness and response. BAP poses the critical response planning questions: “How much response resources should industry provide?” and “In what timeframes should those resources be deployed?” Prior California regulations intended to achieve BAP by relying on vessels to identify hazards, trajectories, environmental consequences, and response resource plans, produced less than optimal results in many instances. Though effective in theory, this approach resulted in fuzzy consequences and vague arrangements for adequate response. Because it was neither clear what sites would be protected (and what response resources would be required) nor at what time, and because it was consequentially not clear what response resources would be engaged to execute protection, drilling C-plans became obtuse. This in turn fostered “paper tiger” OSROs and resulted in an uneven playing field for business competitors. In Californias new approach, OSPR used many of the original concepts to identify BAP by using the NOAA GNOME oil spill model for generic vessel risk threats for California ports and along the California coast. This paper explains the theory, steps, and details. As a result of this process, BAP has been defined in terms of specific site deployments at specific time intervals and presented in tables in regulation. This new approach provides a number of benefits and solutions to the difficult issues in the former approach, including a standard for BAP.


1985 ◽  
Vol 1985 (1) ◽  
pp. 31-34 ◽  
Author(s):  
J. S. Shum ◽  
M. Borst Mason & Hanger-Silas

ABSTRACT The increase in petroleum development activities in the arctic region has raised concerns over potential oil spills during the broken ice season. Currently, exploratory drilling for oil and gas is restricted during this season due to the lack of proven oil spill cleanup methods for broken ice fields. Test programs have been conducted at the U.S. Environmental Protection Agency's Oil and Hazardous Materials Simulated Environmental Test Tank (OHMSETT) to determine the feasibility of cold weather testing and to evaluate various oil spill cleanup methods considered for use in the arctic. This paper describes a test program to determine the practicality of using a catamaran-mounted rope-mop skimmer for spill cleanup in broken ice fields. An Oil Map Pollution Control, Ltd., prototype arctic skimmer was tested in the test tank under controlled conditions during January 30 to February 7, 1984. Freshwater ice cubes of 250 to 280 millimeters (mm) were used in the tests to approximate a broken ice field. During tests, a predetermined ice condition was established across the encounter width of the rope mops and oil was distributed over the ice. The oil and ice were channeled into the skimmer by two booms, which were joined to the skimmer at the bow. Nine tests were conducted at a tow speed of 1 knot using Circo 4X light oil. During the tests, ice concentrations were varied from 0 to 75 percent of the surface area, and oil slick thickness varied from 3 to 8 mm. The test results demonstrated the spill cleanup capability of the skimmer in ice-infested waters having up to 50 percent ice coverage. At higher ice concentrations, the skimmer was ineffective due to ice jamming at the skimmer inlet.


1975 ◽  
Vol 1975 (1) ◽  
pp. 329-335
Author(s):  
S.L. Ross

ABSTRACT In mid-1972, the Environmental Emergency Branch was formed within the Canadian Department of the Environment. This organization, which is part of the Environmental Protection Service, is responsible for protective and preventative activities related to pollution emergencies, including oil spills. The technology development work carried out by the branch can be divided into two main programs. One is the testing, evaluation, and development of oil spill countermeasures equipment, materials, and techniques. The program for oil spill equipment including skimmers, booms, pumps, and remote sensing systems is being carried out in Hamilton Harbour and Lake Ontario. Much work is also underway on the testing, evaluation, and development of various oil spill treating agents, including dispersants, absorbents, sinking agents, biodegradation agents, combustion agents, and chemical oil herders. The other main responsibility of the spill technology group is to design and develop various countermeasures systems for specific high risk and sensitive areas in Canada. This program involves putting together the various countermeasures equipment and materials described above into integrated systems that can be used to fight spills in specific locations. Four areas which are being thoroughly investigated at this time are Vancouver Harbour, the Beaufort Sea, the St. Clair River, and the St. Lawrence River. These areas are quite different environmentally, and the “custom-designed” countermeasures systems needed for each area are similarly different. Much of the technology development and research effort in Canada has been directed toward cold environment problems. This includes studies related to drilling blowouts in the Arctic, to pipeline spills under winter conditions, to dyking of storage facilities in the north, and to spills in ice-infested water.


2017 ◽  
Vol 2017 (1) ◽  
pp. 1182-1193
Author(s):  
E. H. Owens ◽  
D. F. Dickins ◽  
L. B. Solsberg ◽  
O-K. Bjerkemo

ABSTRACT In 2015 and 2016, two complementary projects produced both a new strategic guide (in two versions) and an updated operationally oriented guide to assist managers, regulators and responders in responding effectively to oil spills in snow and ice conditions. The objective of the first initiative, which began as a Marine Environment Protection Committee (MEPC) of the International Maritime Organization (IMO) project, a “Guide to Oil Spill Response in Snow and Ice Conditions”, was to identify and describe the strategic aspects of planning and operations. This program gained a separate phase through the Emergency Prevention, Preparedness and Response (EPPR) working group of the Arctic Council to adapt the Guide specifically for Arctic waters. The second initiative by EPPR was to update the 1998 “Field Guide for Oil Spill Response in Arctic Waters” while retaining the original operational focus. The 2016 version of the Field Guide incorporates major revisions and updates to sections on strategies and countermeasures, for example the use of herders and burning, dispersants in ice and specialized brush skimmers as well as advances in remote sensing and tracking. In addition, new sections address important topics such as Health and Human Safety, Logistics and Wildlife Response. The overall goal was to produce two complementary documents that provide a broad base of essential information to key decision-makers and responders at both the strategic planning level and at the field tactics and operations level. These two projects bring together a wide range of new knowledge generated over the past two decades that make many previous manuals and documents out of date. With such a vast amount of recent literature, the new strategic guide and the operational field guide update can only provide a brief summary of the new material but are valuable tools to indicate where the more detailed documents can be found.


2014 ◽  
Vol 2014 (1) ◽  
pp. 299066
Author(s):  
W. Scott Pegau

The Oil Spill Recovery Institute funds research, education, and demonstration projects designed to respond to, and understand the effects of, oil spills in the Arctic and sub-Arctic marine environment. Funding is guided by a research plan that includes goals of Understanding, Responding, Informing, and Partnering. Several projects have been supported over the past few years related to oil spills in the Arctic. These efforts include development of remote sensing technologies, mechanical clean up methods, understanding of the biodegradation potential, and support of workshops and guidelines. This poster provides a brief description of work supported in the past. We also want to examine priorities for funding in the future. The primary areas of interest are detection technologies and improving spill response in the ice environment. We are seeking input on topics of importance for OSRI funding and potential partners for supporting projects of mutual interest.


2018 ◽  
Vol 64 (2) ◽  
pp. 208-211 ◽  
Author(s):  
S. N. Zatsepa ◽  
A. A. Ivchenko ◽  
V. V. Solbakov ◽  
V. V. Stanovoy

Estimation of the oil spill size at continuous spills on the moving sea surface or on the drifting ice field is the actual practical problem. Engineering estimation means the reduction of the hydrodynamic equations system to the balance of only two main forces that cause movement and resistance of the oil flow. From the simplified problem statement some practical relations were obtained for estimating the size of spill, including continuous oil spill with surface water currents presence, for spill onto porous snow-ice cover and onto the drifting ice cover. The obtained estimations can be used in more complicated models of oil spill transformation in the marine environment, primarily in the Arctic zone, and give basis for development of adequate responses on oil spills. The comparison of the obtained estimates with the self-similar solutions of the corresponding equations of motion of the spreading substance shows a satisfactory fit.


Resources ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Victor Pavlov ◽  
Victor Cesar Martins de Aguiar ◽  
Lars Robert Hole ◽  
Eva Pongrácz

Increasing exploration and exploitation activity in the Arctic Ocean has intensified maritime traffic in the Barents Sea. Due to the sparse population and insufficient oil spill response infrastructure on the extensive Barents Sea shoreline, it is necessary to address the possibility of offshore accidents and study hazards to the local environment and its resources. Simulations of surface oil spills were conducted in south-east of the Barents Sea to identify oil pollution trajectories. The objective of this research was to focus on one geographical location, which lies along popular maritime routes and also borders with sensitive ecological marine and terrestrial areas. As a sample of traditional heavy bunker oil, IFO-180LS (2014) was selected for the study of oil spills and used for the 30-year simulations. The second oil case was medium oil type: Volve (2006)—to give a broader picture for oil spill accident scenarios. Simulations for four annual seasons were run with the open source OpenDrift modelling tool using oceanographic and atmospheric data from the period of 1988–2018. The modelling produced a 30-year probability map, which was overlapped with environmental data of the area to discuss likely impacts to local marine ecosystems, applicable oil spill response tools and favourable shipping seasons. Based on available data regarding the environmental and socio-economic baselines of the studied region, we recommend to address potential threats to marine resources and local communities in more detail in a separate study.


Sign in / Sign up

Export Citation Format

Share Document