DISPERSANT EFFECTIVENESS ON OIL SPILLS – EMPIRICAL CORRELATIONS

2008 ◽  
Vol 2008 (1) ◽  
pp. 801-804
Author(s):  
Kavitha R. Nagarajan ◽  
Niranjan Deshpande ◽  
George A. Sorial ◽  
James W. Weaver

ABSTRACT When a dispersant is applied to an oil slick, its effectiveness in dispersing the spilled oil depends on various factors such as oil properties, wave mixing energy, temperature of both oil and water, and salinity of the water. Estuaries represent water with varying salinities. In this study three salinity values in the range of 10–34 ppt were investigated, representing potential salinities found in typical estuaries. Three oils were chosen to represent light refined oil, light crude oil and medium crude oil. Each oil was tested at three weathering levels to represent maximum, medium and zero weathering. Two dispersants were chosen for evaluation. A modified trypsinizing flask termed the ‘Baffled Flask’ was used for conducting the experimental runs. A full factorial experiment was conducted for each oil to investigate the effect of salinity (3 levels), temperature (6 levels), oil weathering (3 levels) and mixing energy (150, 200, and 250 rpm) on dispersant effectiveness. Each experiment was replicated four times in order to evaluate the accuracy of the test. Statistical analyses of the experimental data were performed separately for each of the three oils three times (with or without dispersant). Viscosity of the three oils at the different temperatures and weathering conditions were determined. An empirical correlation of the viscosity for each of the three oils was then obtained. A linear regression model incorporating the viscosity correlations to represent temperature and weathering, the other remaining main factors (salinity and flask speed) and second order interactions among the factors was developed and was found to accurately represent the experimental data. The empirical approach to the interaction between the dispersant and oil slick developed could provide a useful or practical approach for including dispersants in a model to assess the impact of dispersant usage on oil spills.

2006 ◽  
Vol 63 (8) ◽  
pp. 1418-1430 ◽  
Author(s):  
Subhashini Chandrasekar ◽  
George A. Sorial ◽  
James W. Weaver

Abstract When a dispersant is applied to an oil slick, its effectiveness in dispersing the spilled oil depends on factors such as oil properties, wave-mixing energy, temperature, and salinity of the water. Estuaries represent water with varying salinity, so in this study, three salinity values in the range 10–34 psu were investigated, representing potential salinity concentrations found in typical estuaries. Three oils were chosen to represent light refined oil, light crude oil, and medium crude oil. Each was tested at three weathering levels to represent maximum, medium, and zero weathering. Two dispersants were chosen for evaluation. A modified trypsinizing flask termed a baffled flask was used to conduct the experimental runs. A full factorial experiment was conducted for each oil. The interactions between the effects of salinity and three environmental factors, temperature, oil weathering, and mixing energy, on dispersion effectiveness were investigated. Each experiment was replicated four times in order to evaluate the accuracy of the test. Statistical analyses of the experimental data were performed for each of the three oils independently for each dispersant treatment (two dispersants and oil controls). A linear regression model representing the main factors (salinity, temperature, oil weathering, flask speed) and second-order interactions among the factors was fitted to the experimental data. Salinity played an important role in determining the significance of temperature and mixing energy on dispersant effectiveness for almost all the oil–dispersant combinations. The impact of salinity at different weathering was only significant for light crude oil with dispersant A.


1991 ◽  
Vol 1991 (1) ◽  
pp. 677-680 ◽  
Author(s):  
D.D. Evans ◽  
G.W. Mulholland ◽  
J.R. Lawson ◽  
E.J. Tennyson ◽  
M.F. Fingas ◽  
...  

ABSTRACT The Center for Fire Research (CFR) at the National Institute of Standards and Technology (NIST) is conducting research related to safety in offshore drilling and oil spill pollution under joint funding from Minerals Management Service (MMS), U.S. Coast Guard, and the American Petroleum Institute. Technical assistance in measurement has been donated by Environment Canada. This research has focused on examining the phenomena associated with crude oil combustion and the impact of using burning as a spill response method. The process of burning crude oil on water as a means to mitigate oil spills has been investigated with a research effort combining both small-scale experiments and calculations. As a result of these studies, there has been increased understanding of the burning process, including burning rate, heat radiation, smoke emission, smoke composition, and smoke dispersion in the atmosphere. A key to gaining acceptance of burning as a spill response technique is the demonstration that favorable results obtained at laboratory scale can be shown to continue in test burns representing the size of fires expected in actual operations. Field-scale burn tests are being planned and coordinated jointly by MMS, API, USCG, and Environment Canada to document the use of burning technology under conditions simulating actual oil spill cleanup operations. The purpose of this project is to measure the effects of oil spill burning in laboratory and field tests.


Author(s):  
Yaser Ahmadi ◽  
Babak Aminshahidy

An experimental and modeling approach was developed in this research to investigate the effects of CO2, new synthesized CaO and commercial SiO2 nanoparticle concentrations on the Asphaltene Precipitation Envelope (APE). First, the effects of different temperatures and CO2 concentrations on asphaltene precipitation trends were observed. Second, the impact of CaO and SiO2 nanoparticle concentrations on asphaltene precipitation were observed in the presence of CO2 at different temperatures. Third, Advanced Redlich-Kwong-Soave (RKSA) equation of state (EOS) was considered to modify Multiflash (Infochem Co.) software from the aspect of entering physical characteristics of CaO and SiO2 nanoparticles as pseudo components. Fourth, the developed model was used for predicting the effects of CO2, CaO and SiO2 concentrations on APE in ranges that no experimental data existed. At constant CO2 concentration and temperature during natural depletion, asphaltene precipitation increased above saturation pressure, while below saturation pressure, asphaltene precipitation decreased (solution gas evolved from crude oil and made it richer). As temperature increased at constant CO2 concentration, asphaltene precipitation decreased, while it was observed that the saturation pressures increased. Although two different trends were observed in upper asphaltene onsets at different temperatures and CO2 concentrations, in wide ranges of data, as temperature increased, asphaltene upper onset pressure increased. CaO and SiO2 nanoparticles decreased asphaltene precipitations in the presence of CO2, but CaO had better applications for reducing asphaltene precipitation. The proposed Software/RKSA EOS model was in good agreement with the obtained experimental data, and it was applicable for predicting the effects of CO2, CaO and SiO2 nanoparticles concentration on APE.


2001 ◽  
Vol 2001 (2) ◽  
pp. 1209-1211 ◽  
Author(s):  
Anita George-Ares ◽  
Richard R. Lessard ◽  
Gerard P. Canevari ◽  
Kenneth W. Becker ◽  
Robert J. Fiocco

ABSTRACT Recent inland spills in Latin America have generated interest in dispersant use for freshwater oil spills. However, oil spill dispersants primarily are formulated for use in marine waters. Dispersants that are designed for saltwater use show reduced effectiveness when applied in freshwater. The effectiveness of COREXIT® 9500 in low salinity waters varies with the type of oil, the dispersant-to-oil ratio (DOR), and other factors. The effectiveness of COREXIT® 9500 can decrease markedly at salinities of 15 ppt or less. The authors observed an increase in effectiveness of COREXIT® 9500 in freshwater when the dispersant was blended with an inorganic, divalent salt, such as calcium chloride, prior to use (patent pending). COREXIT® 9500* refers here to the blend of the salt and dispersant. The Exxon Dispersant Effectiveness Test (EXDET) was used to evaluate dispersant performance in deionized water and in river water samples from Rio de la Plata, Argentina. COREXIT® 9500 showed 22% effectiveness on Alaska North Slope (ANS) crude oil in deionized water, a value indicative of poor effectiveness. Depending on the amount of calcium chloride added, COREXIT® 9500* showed up to 63% effectiveness on ANS crude oil in deionized water, which indicates good effectiveness. The effectiveness of COREXIT® 9500* and COREXIT® 9500 was compared for three additional crude oils both in deionized water and in river water. In all cases, the effectiveness of COREXIT® 9500 was lower compared with COREXIT® 9500*.


1997 ◽  
Vol 1997 (1) ◽  
pp. 805-810
Author(s):  
Janet H. Kucklick ◽  
Don Aurand

ABSTRACT Evaluating the value of using dispersants or in-situ burning in various regions of the United States requires an estimate of how often such technology might reasonably be considered. This study collected information on marine oil spills of 1000 barrels or more occurring in the coastal and offshore waters of the United States (excluding Alaska) from 1973 through June 1994. Each incident was examined using criteria for oil type, weather conditions, water depth, and distance from the shoreline. This allowed the frequency and geographic distribution of dispersible and burnable spills to be estimated. The effect of modifying the criteria on the frequency distribution of dispersible and burnable spills was evaluated. Data were obtained on 138 refined product and 69 crude oil spills. The majority of these spills occurred in shallow water, close to the shoreline, and/or close to a sensitive receptor. Depending on the severity of the criteria, between 10% and 51% of the crude oil spills and 4% and 18% of the refined oil spills studied were realistic candidates for dispersant use. Between 35% and 58% of the crude and 22% and 38% of the refined oil spills were realistic candidates for burning.


2017 ◽  
Vol 24 (1) ◽  
pp. 315-326
Author(s):  
Dorota Jarząbek ◽  
Wiesław Juszkiewicz

Abstract The ability to use computer simulation to predict the behavior of oil spills at sea enables better use of available personnel and resources to combat such spills. The use of oil collecting equipment properly selected to suit the conditions is essential for the operation to be effective. Therefore, an attempt is made to verify the influence of weather conditions on the efficiency of oil recovery. Three types of spilled crude oil were simulated. A relevant experiment was conducted on a PISCES II oil spill simulator.


2019 ◽  
Vol 70 (8) ◽  
pp. 2835-2842 ◽  
Author(s):  
Ion Ion ◽  
Raluca Madalina Senin ◽  
Georgeta Ramona Ivan ◽  
Sanda Maria Doncea ◽  
Michael Patrick Henning ◽  
...  

The adsorption of triclocarban was investigated on pristine and irradiated MWCNTs, at different temperatures, in aqueous synthetic samples at different pH values and for different concentrations of humic acid (HA) from natural organic matter. Commonly used models of the adsorption isotherms, Freundlich and Langmuir were selected to fit the experimental data. The effects of TCC concentration, of the temperature and of the concentration of humic acid from natural organic matter were tested to study the impact of the environmental conditions over the sorption process.


Author(s):  
Gordon Staples ◽  
Oscar Garcia ◽  
Ji Chen ◽  
Benjamin Desschamps ◽  
Dean Flett

Abstract 688970 For oil spill response, one of the key parameters is detection of actionable oil. Actionable oil (AO), which tends to be thick, emulsified oil, refers to oil that can be cleaned-up versus non-actionable oil (sheen) which cannot be readily cleaned-up. Previous studies by MDA of a controlled oil spills in the North Sea have shown the capability of RADARSAT-2 quad polarized data to detect AO using the entropy parameter (H) derived from the Cloude-Pottier decomposition. H → 0 for oil-free water and H → 1 in the presence of an oil slick. To further test the detection of AO, RADARSAT-2, ASTER, WorldView imagery and in situ measurement were acquired April 25, 2017 at the MC20 site off Louisiana. Five oil thickness classes ranging from 1 micron to 100 microns were derived from a maximum likelihood classifier based on the ASTER and WorldView images and in situ samples. For oil-free water, the average H was 0.13 and 0.62 for the slick. There was good correlation between the variability of H and the oil thickness classes. Specifically, larger H was correlated with oil thickness in the 50 – 200 micron range and smaller H was correlated with oil in the 1 micro range. Not surprising there was overlap in H for area were the oil thickness was ~ 1 micron and the area deemed to be slick-free. The results indicate that actionable oil can be discriminated from non-actionable oil based on the relative difference of H. Although these results are encouraging, one of the operational limitations is based on the use of the relatively small swath-width (25 km – 50 km) of the RADARSAT-2 quad polarized mode. The impact of the swath-width can be mitigated with data from the RADARSAT Constellation Mission (RCM). The RCM has a compact polarimetry (CP) mode that provides more polarimetric information than dual polarized modes, less than quad polarized modes, but is available for swath widths up to 500 km. Analysis of simulated SC50 RCM data (50 m resolution, 350 km swath width) derived from the aforementioned RADARSAT-2 image shows similar oil-slick variability that was observed in the RADARSAT-2 image and hence the capability to detect AO.


1975 ◽  
Vol 1975 (1) ◽  
pp. 337-342
Author(s):  
Gerard P. Canevari

ABSTRACT This paper reviews the development during the past two years of self-mixing chemical dispersants to minimize damage from oil spills. Some history regarding the acceptance (or lack thereof) of previous conventional dispersants requiring mixing energy is covered so that the progress manifested by the current self-mix dispersant approach can be readily appreciated. The utility of the self-mix dispersant system is based upon both the elimination of the laborious mixing requirement and the formation of submicron diameter size oil droplets. The role of droplet size in the behavior and movement of dispersed oil as well as the effect of droplet size on the toxicological and ecological impact of the dispersed oil, are significant aspects that are discussed. The planned research to determine the fate of dispersed oil under actual field conditions is outlined. This will permit a more accurate and objective assessment of the impact of dispersed oil on the marine environment than is now available from the extrapolation of laboratory bioassays. For example, the rapid dilution-dispersion of the oil into a large body of water is an important characteristic and advantage of the chemical dispersion process and is very much influenced by droplet size. However, in laboratory tests the concentration of the oil is maintained at a constant level during the test exposure, and little attention is directed toward the determination or control of the dispersed oil droplet size.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Mingxu Yi ◽  
Jun Huang ◽  
Lifeng Wang

In this paper, experiments of crude oil demulsification using ultrasound, chemical demulsifier, and the combined method of ultrasound and chemical demulsifier, respectively, at different temperatures (40°C, 60°C, and 70°C) are carried out. The photos of water droplet distribution in crude oil, taken with microscopic imaging system, before and after demulsification using the above methods at 70°C are given. Research results show that the combined method of ultrasound and chemical demulsifier has the best demulsification effect, followed by chemical demulsifier. Ultrasound without using chemical demulsifier has the least demulsification effect. Furthermore, the impact of ultrasonic power, treatment time, and temperature on crude oil demulsification using the combined method of ultrasound and chemical demulsifier is studied. Results indicate that the final dehydration rate increases with the increase of temperatures and ultrasonic power and almost does not change with the increase of ultrasonic treatment time. These important conclusions will provide the foundation for an extensive application of the combined method of ultrasound and chemical demulsifier.


Sign in / Sign up

Export Citation Format

Share Document