scholarly journals Behavior of Concrete Deep Beam Reinforced with Inclined Web Reinforcement around Different Opening Shapes

2019 ◽  
pp. 1-12
Author(s):  
Ahmed H. Abdel-Kareem ◽  
Ibrahim A. El-Azab

The objective of this paper is to experimentally and analytically estimate the influence of inclined reinforcement placed above and below web openings having different shapes in reinforced concrete (RC) deep beam. Twenty RC deep beams had the same overall geometric dimensions were tested under two-point top loading. Test variables included amount of inclined reinforcement, opening shape (circular, square, rectangular and relatively new type rectangular with fillet edges) and shear span-to-depth ratio. The relationship between the amount of inclined reinforcement and the opening size was expressed as the effective inclined reinforcement factor. As this factor was increased, the behavior of tested beams improved, where the crack width and its development decreased, and the ultimate load increased. The improvement rate of ultimate load with increasing effective inclined reinforcement for beams with rectangular openings having fillet edges was higher than that with sharp edges. Beams with opening having square, circular, or rectangular with fillet edges shapes and having effective inclined reinforcement ratio above 0.085 and 0.091 under shear span-to-depth ratio 1.0 and 0.6, respectively had higher ultimate load than that of corresponding solid beams. The effect of inclined reinforcement on enhancing the behavior of deep beam with opening increased as the shear span-to-depth ratio decreased. The ultimate load of tested beams was estimated using upper-bound analysis of the plasticity theory and compared with the test results. It is shown that the prediction has a consistent agreement with the experimental results.

Author(s):  
Nabeel A. Al-Bayati ◽  
Bassman R. Muhammed ◽  
Muroj F. Oda

Results of test on seven simply supported self-compacting reinforced concrete deep beams, including six of these beams containing circular openings in center of load path are reported in this paper. The objective of the tests was determined the influence of, changing shear span to effective depth ratio a/d, the existence of circular openings in shear span and using inclined strips of carbon fiber polymer (CFRP) on behavior of deep beams. The general trend in crack pattern, the load-deflection response, and the mode of failure of reinforced SCC deep beams were also investigated. All specimens had the same geometry, details of the flexure and shear reinforcement in both vertical and horizontal directions and they were tested under symmetrical two-point loads up to failure. The experimental results revealed that the web openings within shear spans caused an important reduction in the deep beam capacity by 50% when compared with the corresponding solid beam. The increase a/d ratio from 0.8 to 1.2 decreases the ultimate load by 21.7% and 22.5 % for the reference unstrengthened beam and strengthened beam, respectively, also it was found that the externally inclined CFRP strips in deep beams increased the ultimate strength up to 39.5%, and enhanced the stiffness of deep beams with openings.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1218 ◽  
Author(s):  
Jun-Hong Zhang ◽  
Shu-Shan Li ◽  
Wei Xie ◽  
Yang-Dong Guo

This study aimed to investigate the shear capacity performance for eight deep beams with HTRB600 reinforced high strength concrete under concentrated load to enable a better understanding of the effects of shear span–depth ratio, longitudinal reinforcement ratio, vertical stirrup ratio and in order to improve design procedures. The dimension of eight test specimens is 1600 mm × 200 mm × 600 mm. The effective span to height ratio l0/h is 2.0, the shear span–depth ratio λ is 0.3, 0.6 and 0.9, respectively. In addition, the longitudinal reinforcement ratio ρs is set to 0.67%, 1.05%, 1.27%, and the vertical stirrup ratio is taken to be 0%, 0.25%, 0.33%, 0.5%. Through measuring the strain of steel bar, the strain of concrete and the deflection of mid-span, the characteristics of the full process of shear capacity, the failure mode and the load deflection deformation curve were examined. The test results showed that the failure mode of deep beams with small shear span–depth ratio is diagonal compression failure, which is influenced by the layout and quantity of web reinforcement. The diagonal compression failure could be classified into two forms: crushing-strut and diagonal splitting. With decreasing of shear span–depth ratio and increasing longitudinal reinforcement ratio, the shear capacity of deep beams increases obviously, while the influence of vertical web reinforcement ratio on shear capacity is negligible. Finally, the shear capacity of eight deep beams based on GB 50010-2010 is calculated and compared with the calculation results of ACI 318-14, EN 1992-1-1:2004 and CSA A23.3-04, which are based on strut-and-tie model. The obtained results in this paper show a very good agreement with GB50010-2010 and ACI 318-14, while the results of EN 1992-1-1:2004 and CSA A23.3-04 are approved to be conservative.


2015 ◽  
Vol 764-765 ◽  
pp. 1080-1084
Author(s):  
Young Hak Lee ◽  
Hee Cheul Kim ◽  
Ha Eun Park ◽  
Nam Shik Ahn ◽  
Min Sook Kim

This paper deals with the application of Glass Fiber Reinforce Polymer (GFRP) to shear reinforcement for deep beam. Instead of steel stirrup, GFRP shear reinforcement was fabricated in the form of plate with openings and embedded in concrete. An experimental study was performed to evaluate the shear behavior of eight shear reinforced concrete deep beam. Shear test was conducted in which the shear span-to-depth ratio were 1.1, 1.3 and 1.6. Also, shear reinforcement area, and effective depth were considered as variables. Crack patterns, failure modes, and load-displacement were compared in order to evaluate shear strength of the specimens. The effects of these variables on the shear strength of the deep beam were examined. The test results in terms of the shear span-to-depth ratio showed that shear strength increased when the ratio decreased. Also, it showed that shear strength increased as the reinforcement area and the effective depth increased.


2014 ◽  
Vol 898 ◽  
pp. 341-345
Author(s):  
Tian Jiu Pan ◽  
Ya Bo Qiu ◽  
Hong Zheng ◽  
Ran Zhao

Stiffing steel plate deep beam is introduced as a new lateral force resistant structure system and put forward mechanism of stiffing steel plate deep beam. Mechanical property of stiffing steel plate deep beam with different span-depth ratio under horizontal low cyclic load is analyzed through ANSYS which is a software of finite element analysis. The results indicates that with decreasing of span-depth ratio ultimate load raised substantially and strength of component gradually changes from depending on bending to shearing. The optimal value of span-depth ratio is 1.5.


Author(s):  
Oday Adnan Abdulrazzaq ◽  
Ashraf Mahammed Khadhim

In this study experimental tests were conducted to investigate the behavior of reinforcedconcrete deep beam with openings using lightweight concrete. The experimental programinvolved of testing thirteen simply supported deep beam specimens which tested under statictwo-point loads. Light expanding clay aggregate (LECA) was used to produce lightweightconcrete. Test variables were the shape and size of openings, reinforcement around theopenings, position of the openings and shear span to depth ratio. It was found that thebehavior of deep beams which made of lightweight concrete is similar to that made of normalconcrete. It was concluded that the ultimate load and the measured maximum deflection inbeams that have circular openings are larger compared to that have rectangular openings. Atthe same time, the ultimate load decreased and the measured values of maximum deflectionincreased with increasing the size of the openings in deep beams. Also, it was found thatproviding steel reinforcement around the openings caused an increasing in the load capacityof the tested beams. Decreasing the shear span ratio from 0.5 to 0.4 caused an increasing inthe ultimate load and the measured maximum deflection.


2022 ◽  
Vol 961 (1) ◽  
pp. 012095
Author(s):  
Mustafa Kamil Abbas ◽  
Hayder Wafi Al_Thabhawee

Abstract The main objective of this study is to compare the structural behavior of composite steel– concrete beams using cellular beams with and without steel ring stiffeners placed around the web openings. An IPE140 hot rolled I-section steel beam was used to create four specimens: one without openings (control beam); one without shear connectors (non-composite); a composite steel–concrete beam using a cellular beam without strengthening (CLB1); and a composite steel–concrete beam using a cellular beam (CLB4-R) with its openings strengthened by steel ring stiffeners with geometrical properties Br = 37mm and Tr = 5mm. CLB1 was fabricated with openings of 100mm diameter and a 1.23 expansion depth ratio, while CLB4-R was fabricated with openings of 130mm diameter, a 1.42 expansion depth ratio. Both beams were 1700mm in length with ten openings. The results of this experiment revealed that the loads applied to CLB1 and CLB4-R at deflection L/360 exceeded the load applied to the control specimen at the same deflection by 149.3% and 177.3%, respectively. The results revealed that the non-composite beam had an ultimate load 29% lower than that of the control beam. The ultimate load on CLB1 was 5.3% greater than that of the control beam, and failure occurred due to web-post buckling. While the ultimate load of the CLB4-R beam was 18.43% greater than that of the control beam, the Vierendeel mechanism was indicated as the failure mode.


2020 ◽  
Vol 14 (1) ◽  
pp. 51-69
Author(s):  
Hayder H. H. Kamonna ◽  
Qasim M. Shakir ◽  
Haider A. Al-Tameemi

Background: When a beam is loaded on two opposite faces and the beam’s depth is increased such that either the span-to-depth ratio is smaller than four or the shear-span-to-depth ratio is less than two, it will behave like a deep beam. Strain distribution in deep beams is different from that of ordinary beams because it is nonlinear along with the beam depth. If the beam is cast monolithically with a slab in the slab–beam system, it is considered a T-deep beam. The behavior of the resulting member is more complicated. Objective: The effect of flange width on the behavior of high-strength self-consolidated reinforced concrete T-deep beams was investigated. Methods: Experimental and numerical studies were conducted. Two shear span-to-depth ratios (1.25 and 0.85) were adopted for two groups. Each group consisted of four specimens: one rectangular beam that served as a reference beam and three flanged beams with flange widths of 440, 660 and 880 mm. All specimens had an overall depth of 450 mm, a width of 160 mm and a total length of 1600 mm. The tests were performed under a two-point load with a clear span of 1400 mm. A nonlinear analysis was also performed using ANSYS software. Results: Throughout the study, the performance of the T-deep beams has been investigated in terms of cracking loads, failure loads, modes of failure, loading history, rate of widening of cracks and ductility index. Results revealed that such parameters have a different ranges of effect on the response of T-deep beams. Calibration of the ANSYS model has been done by comparing results of load-deflection curves, cracking and failure loads with that obtained experimentally. Conclusion: The study’s results indicated that increasing the flange width yielded an 88% improvement in the failure load and an approximately 68% improvement in the cracking load. This positive effect of flange width on the failure load was more pronounced in beams with higher shear span to- depth ratios and flange widths of 660 mm. In addition, the beam’s ductility was improved, especially in cases corresponding to a higher shear span-to-depth ratio. The finite element simulation showed good validation in terms of the load-deflection curve with a maximum failure load difference of 9%. In addition, the influence of longitudinal steel reinforcement on the behavior of such members was studied. Some parameters that reflect the effect of changing the flange width on the behavior of deep beams were also presented. Increasing the flange width is more effective when using normal strength concrete than when using high-strength concrete in terms of cracking load, beam stiffness, and failure load.


2019 ◽  
Vol 5 (1) ◽  
pp. 209 ◽  
Author(s):  
Waleed A. Jasim ◽  
Abbas A. Allawi ◽  
Nazar Kamil Ali Oukaili

This paper presents an experimental and numerical study which was carried out to examine the influence of the size and the layout of the web openings on the load carrying capacity and the serviceability of reinforced concrete deep beams. Five full-scale simply supported reinforced concrete deep beams with two large web openings created in shear regions were tested up to failure. The shear span to overall depth ratio was (1.1). Square openings were located symmetrically relative to the midspan section either at the midpoint or at the interior boundaries of the shear span. Two different side dimensions for the square openings were considered, mainly, (200) mm and (230) mm. The strength results proved that the shear capacity of the deep beam is governed by the size and location of web openings. The experimental results indicated that the reduction of the shear capacity may reach (66%). ABAQUS finite element software program was used for simulation and analysis. Numerical analyses provided un-conservative estimates for deep beam load carrying capacity in the range between (5-21%). However, the maximum scatter of the finite element method predictions for first diagonal and first flexural cracking loads was not exceeding (17%). Also, at service load the numerical of midspan deflection was greater than the experimental values by (9-18%).


2019 ◽  
Vol 2 (1) ◽  
pp. p43 ◽  
Author(s):  
Hussain Naser Hussain ◽  
Qasim M. Shakir

In this study, the structural behavior and performance of the dapped end beams with composite section under effect of static and repeated loads was investigated by experimentally tested and included ten simply supported beams with dapped in one of ends. The parameters that have been taken into consideration represented by studying the effect of reparation longitudinal tensile reinforcement by steel sections, effect of repeated loads, different types of composite steel sections, and influence of increased the shear span to depth ratio (a/d) more than one on the composite dapped end region. The study focused on determining the first cracking load, ultimate strength (Pu), deflection at service and ultimate load, failure mode, load-deflection behavior, ductility ratios, and crack pattern at failure load. The results presented that using the composite I-section instead of normal section in dapped end beams developed the shear capacity for dapped end region and enhanced the first crack appearances about 33.33, and 39.42 % for shear span to depth ratio 1.0, and 1.5 respectively.


Sign in / Sign up

Export Citation Format

Share Document