Investigating the Cutting Mechanics in 2 Dimensional Ultrasonic Vibration Assisted Milling towards Chip Thickness and Chip Formation

Author(s):  
I. Rasidi I. ◽  
N. H. Rafai ◽  
E. A. Rahim ◽  
S. A. Kamaruddin ◽  
H. Ding ◽  
...  
2006 ◽  
Vol 128 (4) ◽  
pp. 893-900 ◽  
Author(s):  
Martin B. G. Jun ◽  
Xinyu Liu ◽  
Richard E. DeVor ◽  
Shiv G. Kapoor

In microend milling, due to the comparable size of the edge radius to chip thickness, chip formation mechanisms are different. Also, the design of microend mills with features of a large shank, taper, and reduced diameter at the cutting edges introduces additional dynamics and faults or errors at the cutting edges. A dynamic microend milling cutting force and vibration model has been developed to investigate the microend milling dynamics caused by the unique mechanisms of chip formation as well as the unique microend mill design and its associated fault system. The chip thickness model has been developed considering the elastic-plastic nature in the ploughing process. A slip-line field modeling approach is taken for a cutting force model development that accounts for variations in the effective rake angle and dead metal cap. The process fault parameters associated with microend mills have been defined and their effects on chip load have been derived. Finally, a dynamic model has been developed considering the effects of both the unique microend mill design and fault system and factors that become significant at high spindle speeds including rotary inertia and gyroscopic moments.


2010 ◽  
Vol 154-155 ◽  
pp. 239-245
Author(s):  
Chong Yang Gao ◽  
Bin Fang ◽  
Yuan Tong Gu

In this paper, two ideal formation models of serrated chips, the symmetric formation model and the unilateral right-angle formation model, have been established for the first time. Based on the ideal models and related adiabatic shear theory of serrated chip formation, the theoretical relationship among average tooth pitch, average tooth height and chip thickness are obtained. Further, the theoretical relation of the passivation coefficient of chip’s sawtooth and the chip thickness compression ratio is deduced as well. The comparison between these theoretical prediction curves and experimental data shows good agreement, which well validates the robustness of the ideal chip formation models and the correctness of the theoretical deducing analysis. The proposed ideal models may have provided a simple but effective theoretical basis for succeeding research on serrated chip morphology. Finally, the influences of most principal cutting factors on serrated chip formation are discussed on the basis of a series of finite element simulation results for practical advices of controlling serrated chips in engineering application.


2011 ◽  
Vol 487 ◽  
pp. 58-62
Author(s):  
Yun Feng Peng ◽  
Zhi Qiang Liang ◽  
Yong Bo Wu ◽  
Yin Biao Guo ◽  
T. Jiang ◽  
...  

A theoretical discussion has been presented for the ductile chip formation in grinding of brittle materials. The single abrasive grit was dealt with a top-rounded cutter removing material of varying undeformed chip thickness. The force model in the chip formation zone was established. The stress analysis showed that larger compressive stress and shear stress can be generated in the chip formation zone, which shields the growth of pre-existing flaws in the material by suppressing the stress intensity factor. When the stress intensify factor is smaller than fracture toughness and the resolved shear stress exceeds the critical flow stress of the material, the ductile chip is formed. Experiments of monocrystal silicon grinding were conducted. The results show that the thrust force is much larger than the cutting force, which ensures the larger compressive stress in the chip formation zone and the formation of ductile chip.


2020 ◽  
Vol 110 (11-12) ◽  
pp. 806-810
Author(s):  
Sebastian Berger ◽  
Jannis Saelzer ◽  
Dirk Biermann

Dieser Beitrag stellt die simulative Analyse zum Einfluss eines begrenzenden Elements zur Unterdrückung der Segmentspanbildung bei der Zerspanung der Titanlegierung Ti6Al4V vor. Dabei lässt sich aufzeigen, dass eine spanbildungsinduzierte periodische Anregung des Systems durch die geeignete Wahl von Geometrie und Positionierung des Elementes verhindert werden kann, wodurch sich die Werkzeugstandzeit und die Oberflächenqualität verbessern und schwingungsdämpfende Maßnahmen obsolet werden. This paper presents the simulative analysis of the influence of a counter element for the suppression of segmented chip formation during the machining of titanium alloy Ti6Al4V. It is shown that a chip formation induced periodic excitation of the system can be prevented by a suitable choice of geometry and positioning of the element, leading to increased tool life and surface quality as well as making vibration damping methods obsolete.


2017 ◽  
Vol 730 ◽  
pp. 289-294 ◽  
Author(s):  
Shuang Yi ◽  
Guang Xian Li ◽  
Song Lin Ding ◽  
John Mo

Recently, titanium alloys have been widely used in industry owing to their excellent physical and mechanical properties. However, the severe cutting conditions such as abrasion, adhesion and high temperature accelerate the rate of chip formation and strongly affect the quality of machined surface. This paper investigates that the effect of the conventional coolant (CC) and graphene oxide suspended (GO) on the drilling process of titanium alloy Ti-6Al-4V using tungsten carbide tools. Here are two main chip formation could be found that zigzag chips and spiral chips. Through the analysis of chip morphology, it was found that under graphene oxide suspended fluid. It can be found that using conventional coolant would form the zigzag chips, while it formed spiral chips when graphene oxide suspended fluid applied. In addition, by analysing the chip free surfaces, the chip lamella stuck and chip flaw happened when conventional fluid used. While the back surfaces could be found that less chip stuck and crack occurred when graphene oxide suspended coolant applied. Finally, chip thickness were investigated that thinner chip thickness was found when graphene oxide suspended fluid used.


Author(s):  
Sunil Dutta ◽  
Suresh Kumar Reddy Narala

Manufacturers across varied segments look for materials having appreciable machinability and surface integrities. Machinability of Mg alloys is a vital aspect during their acceptance for different applications. The chip shape generated in the cutting operation is a crucial attribute dominating the surface roughness, besides the dimension’s precision and the tool lifespan. The study discusses the chip-formation through the dry turning of a novel AM alloy (Mg alloy with 7 wt%Al-0.9 wt%Mn) using carbide insert with a 0.4 mm nose radius. During the experiments, three chip dimensions, namely chip-thickness, chip-length, and chip-width were measured. The turning variables, namely cutting speed( v), depth of cut (DOC), and feed ( f) is altered and applied to the workpiece. The chip shape was mostly dependent on the grouping of turning parameters. It was seen that favorable continuous chip formed at high feed and low DOC. The % contribution of each turning parameter on the chip shape was calculated. The experimental results are validated with the help of analysis of variance (ANOVA). The results show that the % contribution of feed, speed, and DOC on chip-thickness is 58.49%, 28.91%, and 12.49%; the contribution on chip-length is 76.89%, 20.81%, and 2.23%; and on chip-width, it is 25.28%, 0.48%, and 74.33%, respectively. Further, the chip shapes were compared with the shapes that were predicted by FEM software. The study offers vital insights for parameter selection to improve chip shape, which, in turn, contributes to higher surface quality.


Author(s):  
A Thakur ◽  
S Gangopadhyay

Mechanism of chip formation during dry machining of Ni-based super alloys needs considerable research attention as it directly or indirectly affects different aspects of machinability. Therefore, the present research work aims at understanding the mechanism of chip formation with the help of various chip characteristics during dry machining of Inconel 825, a nickel-based super alloy. The influence of multilayer coating deposited using chemical vapour deposition, cutting speed and machining duration has been investigated on types and form of chips, along with different characteristics of chip like shear band thickness, saw-tooth distance, equivalent chip thickness, saw-tooth angle and chip segmentation frequency. Chip–tool contact length, hardness and crystallographic orientation (through X-ray diffraction) of chip have also been studied. Furthermore, different machining characteristics such as cutting force, apparent coefficient of friction and cutting temperature have also been determined for explaining the mechanism of various aspects of chip formation. The results indicated that coated tool restricted sharp increase in shear band thickness with cutting speed and resulted in reduction in saw-tooth distance, saw-tooth angle, equivalent chip thickness, chip hardness and deformation on grains while exhibiting increase in chip segmentation frequency in comparison with its uncoated counterpart.


1973 ◽  
Vol 187 (1) ◽  
pp. 273-283 ◽  
Author(s):  
D. F. Pearce ◽  
B. R. MacManus

The physical processes of dynamic chip formation were examined experimentally using direct photographic techniques; motion in the cutting zone was frozen by synchronizing an intense stroboscopic flash to particular positions in the waveform of the cutting force. Measurements obtained under conditions of controlled vibratory machining gave instantaneous values of the uncut chip thickness, tool-chip contact length, effective shear angle and cutting force. At a given amplitude of uncut chip thickness the peak-to-peak variation of contact length was seen to attenuate with increasing frequency, an effect which was shown to be significant in causing relatively high amplitude shear angle oscillations. Amplitude and phase measurements of the tangential component of the cutting force on wave removal were directly related to the deduced waveform of specific contact length, a process yielding considerable predictability. Measurements were made of the damping inherent in the cutting process; results obtained by applying the techniques of impulse response testing showed the sensitivity of this damping to both the amplitude and the frequency of the variation of the uncut chip thickness. Internal damping resulting from the process of chip formation is not uniquely positive or negative but may vary, depending upon the combination of these parameters.


2010 ◽  
Vol 97-101 ◽  
pp. 1910-1914 ◽  
Author(s):  
Xue Hui Shen ◽  
Jian Hua Zhang ◽  
Tian Jin Yin ◽  
Chun Jie Dong

The applications of micro end milling have been gradually broadened to meet the ever-increasing demands for micro parts. In micro milling, premature tool failure and short service life are major problems. In this study, micro end milling with ultrasonic vibration in normal direction is investigated. Kinematical analysis is done to describe the exact trajectory of the tool tip when vibration is applied. Based on which, an analytical model of chip formation is proposed. By accurate calculation of instantaneous chip thickness, the cutting forces in micro end milling with and without ultrasonic vibration are predicted and verified by a slot-milling experiment. As a result, it is found that ultrasonic vibration in normal direction is helpful when reducing the cutting force owing to intermittent cutting effect.


Sign in / Sign up

Export Citation Format

Share Document