Gezielte Begrenzung der Spandickenschwankungen/Development of a counter element for influencing chip formation when machining titanium. Restriction of chip thickness deviations

2020 ◽  
Vol 110 (11-12) ◽  
pp. 806-810
Author(s):  
Sebastian Berger ◽  
Jannis Saelzer ◽  
Dirk Biermann

Dieser Beitrag stellt die simulative Analyse zum Einfluss eines begrenzenden Elements zur Unterdrückung der Segmentspanbildung bei der Zerspanung der Titanlegierung Ti6Al4V vor. Dabei lässt sich aufzeigen, dass eine spanbildungsinduzierte periodische Anregung des Systems durch die geeignete Wahl von Geometrie und Positionierung des Elementes verhindert werden kann, wodurch sich die Werkzeugstandzeit und die Oberflächenqualität verbessern und schwingungsdämpfende Maßnahmen obsolet werden. This paper presents the simulative analysis of the influence of a counter element for the suppression of segmented chip formation during the machining of titanium alloy Ti6Al4V. It is shown that a chip formation induced periodic excitation of the system can be prevented by a suitable choice of geometry and positioning of the element, leading to increased tool life and surface quality as well as making vibration damping methods obsolete.

2009 ◽  
Vol 407-408 ◽  
pp. 599-603
Author(s):  
Xiang Hua Zhang ◽  
Hong Bing Wu

To accurately simulate the segmented chip formation of titanium alloy Ti6Al4V in high speed cutting process, the key techniques of the finite element modeling were investigated detailed, which included establishing the finite element model, material constitutive relation, chip separation criteria, material failure criteria. A high speed cutting case of titanium alloy Ti6Al4V were simulated with thermal mechanical analysis and adiabatic analysis respectively. Through the comparison of the two simulated results, it proved the segmented chip is formed because of the adiabatic shear. The results prove the finite element model established is correct.


2011 ◽  
Vol 487 ◽  
pp. 39-43 ◽  
Author(s):  
L. Tian ◽  
Yu Can Fu ◽  
W.F. Ding ◽  
Jiu Hua Xu ◽  
H.H. Su

Single-grain grinding test plays an important part in studying the high speed grinding mechanism of materials. In this paper, a new method and experiment system for high speed grinding test with single CBN grain are presented. In order to study the high speed grinding mechanism of TC4 alloy, the chips and grooves were obtained under different wheel speed and corresponding maximum undeformed chip thickness. Results showed that the effects of wheel speed and chip thickness on chip formation become obvious. The chips were characterized by crack and segment band feature like the cutting segmented chips of titanium alloy Ti6Al4V.


Author(s):  
Yun Chen ◽  
Huaizhong Li ◽  
Jun Wang

Titanium and its alloys are difficult to machine due to their high chemical reactivity with tool materials and low thermal conductivity. Chip segmentation caused by the thermoplastic instability is always observed in titanium machining processes, which leads to varied cutting forces and chip thickness, etc. This paper presents an analytical modelling approach for cutting forces in near-orthogonal cutting of titanium alloy Ti6Al4V. The catastrophic shear instability in the primary shear plane is assumed as a semi-static process. An analytical approach is used to evaluate chip thicknesses and forces in the near-orthogonal cutting process. The shear flow stress of the material is modelled by using the Johnson–Cook constitutive material law where the strain hardening, strain rate sensitivity and thermal softening behaviours are coupled. The thermal equations with non-uniform heat partitions along the tool–chip interface are solved by a finite difference method. The model prediction is verified with experimental data, where a good agreement in terms of the average cutting forces and chip thickness is shown. A comparison of the predicted temperatures with published data obtained by using the finite element method is also presented.


2013 ◽  
Vol 770 ◽  
pp. 179-182
Author(s):  
Shu Bao Yang ◽  
Jiu Hua Xu ◽  
Yu Can Fu ◽  
Guo Hui Zhu

Milling tests were undertaken to analyze and compare the machinability of hydrogenated titanium alloy Ti6Al4V. Uncoated WC-Co tool inserts were used in the study. The feed and the depth of milling were maintained constant, and only the milling speed was varied because it is the most affecting parameter. Results showed that cutting force and tool life were greatly influenced by the contents of hydrogen. Tool life decreased at first and then increased gradually with the increase of hydrogen content, and the maximum magnitude decrease of tool life is about 0.2%H, meanwhile, the maximum tool life is about 0.5%H. However, with the increase of cutting speed, the favorable effect of hydrogen on the titanium alloy machinability would be weakened even disappear, therefore, 50-100m/min would be a suitable choice of cutting speed.


2016 ◽  
Vol 826 ◽  
pp. 82-87 ◽  
Author(s):  
Sandip Patil ◽  
Swapnil Kekade ◽  
Pravin Pawar ◽  
Swapnil Pawar ◽  
Rajkumar Singh

Titanium alloy Ti6Al4V comes with several desirable and undesirable properties. Its low thermal conductivity and high chemical reactivity makes it difficult for machining producing high cutting temperature and adhesion tendency. Cutting fluids are used to remove the heat generated at the chip tool interface during the machining process. The coolant with low pressure and improper delivery is not able to break the vapor barrier created by high cutting temperature. The current research investigates the effect of using high pressure coolant system (60 Bar) on the machinability of Ti6Al4V. The machinability was measured in terms of chip breaking, chip thickness, surface finish, tool wear, etc. A detailed statistical and chip mechanism analysis was performed emphasizing the phenomenon of shear band formation, crack formation, chip thickness, chip serration frequency, etc.


2021 ◽  
Vol 1016 ◽  
pp. 1374-1380
Author(s):  
Xavier Sourd ◽  
Mehdi Salem ◽  
Redouane Zitoune ◽  
Akshay Hejjaji ◽  
Damien Lamouche

Abrasive Water Jet (AWJ) machining has proven to be an effective and versatile technique for milling various kinds of materials, even with low machinability such as aerospace grade titanium alloy Ti6Al4V. Many studies have been performed in order to master this technology and produce geometrically accurate shapes. However, in the context of bonding repairs which require surfaces free from foreign bodies, AWJ machining presents a significant drawback in form of abrasive grit embedment. The goal of this present work is then to investigate the effect of a post-AWJ machining cleaning operation using Plain Water Jet process (PWJ – i.e. without abrasive particles) on the surface quality and material properties. For this, several characterization techniques were employed. It was concluded that the contamination has been reduced by 65% without noticeable changes in depth of cut and crater volume. The AWJ milling operation produced surface and subsurface hardening as well as biaxial compressive residual stress, mostly piloted by the jet pressure. PWJ cleaning reduced the depth of hardening without clear modification in surface hardness.


JOM ◽  
2022 ◽  
Author(s):  
Ryan M. Khawarizmi ◽  
Jiawei Lu ◽  
Dinh S. Nguyen ◽  
Thomas R. Bieler ◽  
Patrick Kwon

2011 ◽  
Vol 239-242 ◽  
pp. 2011-2014
Author(s):  
Yue Feng Yuan ◽  
Wu Yi Chen ◽  
Wen Ying Zhang

Tool wear experiments in turning titanium alloy Ti6Al4V in the solution-treated and aged condition were carried out; the influence rules of cutting parameters such as cutting speed, feed rate and cutting depth on the tool life were obtained. Experimental formula of tool wear was regressed based on multi-variable linear regression analysis, it could predict tool life under certain conditions.


2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Kallol Das ◽  
Mahdi Eynian ◽  
Anders Wretland

AbstractDrilling of Ti6Al4V with worn tools can introduce superficial and easily measured features such as increase of cutting forces, entry and exit burrs and surface quality issues and defects. Such issues were presented in the part I of this paper. In part II, subsurface quality alterations, such as changes of the microstructure and microhardness variation is considered by preparing metallographic sections and measurement, mapping of the depth of grain deformation, and microhardness in these sections. Drastic changes in the microstructure and microhardness were found in sections drilled with drills with large wear lands, particularly in the dry cutting tests. These measurements emphasize the importance of detection of tool wear and ensuring coolant flow in drilling of holes in titanium components.


2010 ◽  
Vol 97-101 ◽  
pp. 2058-2061 ◽  
Author(s):  
Hui Wang ◽  
Rong Di Han ◽  
Yang Wang

The machinability of Titanium Alloy Ti6Al4V is poor, the traditional methods to machining is application of cutting fluids with the active additives which cause environmental pollution and health problems. In this paper, the dry electrostatic cooling was applied instead of cutting fluid for the aim of green cutting Ti6Al4V. The ionized device and gas supply system was set up, the effects of dry electrostatic cooling, emulsion oil and dry cutting on tool wear have been examined in turning of Ti6Al4V with carbide tools YG8, the curve between tool flank wear and cutting time was proposed, and the equation between cutting speed and tool life was set up. The results of experiments indicated that application of dry electrostatic cooling reduced the tool wear and increased the tool life. The research results show that clean production was achieved in metal cutting associated with dry electrostatic cooling.


Sign in / Sign up

Export Citation Format

Share Document