scholarly journals Energy Performance Analysis of Convective Drying of Sorghum Gruel Residue

Author(s):  
C. N. Okoro ◽  
J. Isa

This research is concerned with the energy performance analysis of convective drying of sorghum gruel residue. The process was carried out on a hot air dryer conducted at four drying air temperatures of 40, 50, 60, and 70 °C respectively, three different air velocities 0.8, 1.0 and 1.2m/s and three different varieties of sorghum gruel residue, Caudatum,Durra and Guineense respectively. The effects of drying temperature and air velocities on the specific energy consumption, energy efficiency, drying efficiency and thermal efficiency were investigated. The specific energy consumption for Caudatum,Durra, Guineensevarieties ranges from 169530.001 J/kg - 71433.758 J/kg, 170557.25 J/kg - 76732.96 J/kg and 179367.266 J/kg - 83750.923 J/kg respectively while the energy efficiency for Caudatum,Durra, Guineensevarieties ranges from 35.5% - 13.934%, 31.188% - 13.836% and 28.463% - 13.157% respectively. The results of this study also confirmed that the convective drying process is energy intensive and drying fresh agricultural produce with heated-air dryers requires a relatively large amount of energy.

2013 ◽  
Vol 27 (2) ◽  
pp. 127-132 ◽  
Author(s):  
H. Darvishi ◽  
M. Hadi Khoshtaghaza ◽  
G. Najafi ◽  
M. Zarein

Abstract The effect of the microwave-convective drying technique on the moisture ratio, drying rate, drying time, effective moisture diffusivity, microwave specific energy consumption, and energy efficiency of sunflower seedswere investigated.Drying took place in the falling rate period. Increasing the microwave power caused a significant decrease in the drying time. The drying data were fitted to four thin-layer drying models. The performance of these models was compared using the coefficient of determination, reduced chi-square and root mean square error between the observed and predicted moisture ratios. The results showed that the Page model was found to satisfactorily describe themicrowave-convective drying curves of sunflower seeds. The effective moisture diffusivity values were estimated from Fick diffusion model and varied from 1.73 10-7 to 4.76 10-7m2s-1. Increasing the microwave power resulted in a considerable increase in drying efficiency and a significant decrease in microwave specific energy consumption. The highest energy efficiency and the lowestmicrowave specific energy consumption were obtained at the microwave power of 300 W.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 161
Author(s):  
Beatrice Marchi ◽  
Simone Zanoni ◽  
Ivan Ferretti

The term “energy efficiency” covers a wide scope and it is affected by a lack of clarity. To overcome this issue, quantitative measures should be defined and evaluated for each unit of product or process considered. These quantitative indicators are necessary to support and evaluate energy efficiency improvements in industry, by allowing to (i) monitor the energy performance, and (ii) perform benchmarking analyses with best available techniques or similar processes. The specific energy consumption (SEC), i.e., the amount of energy consumed per unit of product/output, is the most commonly used index. Because of the uncertain demand faced by companies, production processes run at a rate that can vary within a certain range, to which correspond a different utilization of plants. Energy efficiency investments can be categorized in accordance to how they affect the SEC: i.e., the first group of investments has the same effects for each production rate (e.g., replacement of dated electric motors with new technologies), while the other has different effects for different ranges of production rate (e.g., installation of an inverter). The present work proposes a novel decision model for supporting the evaluation of the more suitable energy efficiency investment in an industrial context where the demand is uncertain. A numerical example based on a case study from the aluminum industry is then proposed in order to highlight the relevance of the problem discussed and to evaluate the behavior of the models in different scenarios characterized by different load factors. From the results, it evinced that the return of the investment strongly depends on the range of production rate and, thus, on the demand variability.


Author(s):  
V. Nakhodov ◽  
O. Borychenko ◽  
A. Cherniavskyi

Statistics show that energy is one of the highest operating costs in a manufacturing enterprise. So, improving energy efficiency can lead to a significant increase in profits and reduce the impact of the enterprise on the environment. To increase the performance of energy efficiency activities, it is necessary to implement an energy management system. One of the components of this system is energy monitoring, which, in turn, is based on the periodic collection and analysis of data to assess the state of the monitoring objects in terms of energy efficiency. In this paper, the role and place of energy monitoring in the energy management system of an industrial enterprise are noted. The paper proposes the concept of creating energy monitoring system in industrial companies, which is based on the combination of a monitoring system based on specific energy consumption, and usage of group energy characteristics of production facilities. Implementing such energy monitoring systems will allow to conduct operational control of energy efficiency of production facilities by creating individual systems for monitoring energy efficiency, as well as successfully carry out such monitoring at the enterprise and its subdivisions over longer periods of time using specific energy consumption indicators. It also provides general guidelines for conducting energy monitoring. These guidelines were formed based on the results of studying various methods and scientific publications in the field of energy monitoring, as well as on the basis of practical experience in the development and implementation of energy management systems. Particular attention is paid to the issues of processing and analysis of information about the objects of energy monitoring of industrial enterprises. The practical application of the concept of creating energy monitoring systems envisages gradual improvement of the existing monitoring system based on the specific energy consumption, which will be further completely replaced with individual energy efficiency monitoring systems.


2014 ◽  
Vol 10 (2) ◽  
pp. 269-280 ◽  
Author(s):  
Hosain Darvishi ◽  
Mohammad Zarein ◽  
Saied Minaei ◽  
Hamid Khafajeh

Abstract The energy and exergy analysis, drying characteristics and mathematical modeling of the thin-layer drying kinetics of white mulberry using microwave drying were investigated. Results indicated that values of exergy efficiency (33.63–57.08%) were higher than energy efficiency (31.85–55.56%). Specific energy consumption increased with increasing microwave power while improvement potential decreased. The specific energy consumption and improvement potential varied from 3.97 to 6.73 MJ/kg water and 0.71 to 2.97 MJ/kg water, respectively. Also, energy efficiency decreased with decrease in moisture content and microwave power level. The best exergy and energy aspect was obtained by drying at 100 W microwave power. Drying took place mainly in warming up, constant rate and falling rate periods. The Page model showed the best fit to experimental drying data. Effective diffusivity increased with decreasing moisture content and increasing microwave power. It varied from 1.06 × 10−8 to 3.45 × 10−8 m2/s, with an energy activation of 3.986 W/g.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 247 ◽  
Author(s):  
Akvile Lawrence ◽  
Patrik Thollander ◽  
Mariana Andrei ◽  
Magnus Karlsson

Although several research studies have adopted specific energy consumption (SEC) as an indicator of the progress of improved energy efficiency, publications are scarce on critical assessments when using SEC. Given the increasing importance of monitoring improved industrial energy efficiency and the rising popularity of SEC as an energy key performance indicator (e-KPI), an in-depth analysis and problematization on the pros and cons of using SEC would appear to be needed. The aim of this article is to analyse SEC critically in relation to industrial energy efficiency. By using SEC in the pulp and paper industry as an example, the results of this exploratory study show that although SEC is often used as an e-KPI in industry, the comparison is not always straightforward. Challenges emanate from a lack of information about how SEC is calculated. It is likely that SEC is an optimal e-KPI within the same study, when all deployed SECs are calculated in the same way, and with the same underlying assumptions. However, before comparing SEC with other studies, it is recommended that the assumptions on which calculations are based should be scrutinized in order to ensure the validity of the comparisons. The paper remains an important contribution in addition to the available handbooks.


2013 ◽  
Vol 281 ◽  
pp. 649-652 ◽  
Author(s):  
Dae Kyo Jung ◽  
Dong Hwan Lee ◽  
Joo Ho Shin ◽  
Byung Hun Song ◽  
Seung Hee Park

Recently, the interest in increasing energy efficiency of building energy management system (BEMS) has become a high-priority and thus the related studies also increased. In particular, since the energy consumption in terms of heating and cooling system takes a large portion of the energy consumed in buildings, it is strongly required to enhance the energy efficiency through intelligent operation and/or management of HVAC (Heating, Ventilation and Air Conditioning) system. To tackle this issue, this study deals with the BIM (Building Information Modeling)-based energy performance analysis implemented in Energyplus. The BIM model constructed at Revit is updated at Design Builder, adding HVAC models and converted compatibly with the Energyplus environment. And then, the HVAC models are modified throughout the comparison between the energy consumption patterns and the real-time monitoring in-field data. In order to maximize the building energy performance, a genetic algorithm (GA)-based optimization technique is applied to the modified HVAC models. Throughout the proposed building energy simulation, finally, the best optimized HVAC control schedule for the target building can be obtained in the form of “supply air temperature schedule”.


2020 ◽  
Vol 20 (8) ◽  
pp. 3096-3106
Author(s):  
Simeng Li ◽  
Karla Duran ◽  
Saied Delagah ◽  
Joe Mouawad ◽  
Xudong Jia ◽  
...  

Abstract Reverse osmosis (RO) technologies have been widely implemented around the world to address the rising severity of freshwater scarcity. As desalination capacity increases, reducing the energy consumption of the RO process per permeate volume (i.e., specific energy consumption) is of particular importance. In this study, numerical models are used to characterize and compare the energy efficiency of one-stage continuous RO, multi-stage continuous RO, and closed-circuit RO (CCRO) processes. The simulated results across a broad range of feed salinity (5,000–50,000 ppm, i.e., 5–50 g kg−1) and recovery (40%–95%) demonstrate that, compared with the most common one-stage continuous RO, two-stage and three-stage continuous RO can reduce the specific energy consumption by up to 40.9% and 53.6%, respectively, while one-stage and two-stage CCRO can lead to 45.0% and 67.5% reduction, respectively. The differences in energy efficiencies of various RO configurations are more salient when desalinating high-salinity feed at a high recovery ratio. From the standpoints of energy saving and capital cost, the simulated results indicate that multi-stage CCRO is an optimal desalination process with great potential for practical implementation.


Author(s):  
Nikolay Tymchenko ◽  
◽  
Nataliia Fialko ◽  

The article analyzes the main trends in the modern energy policy of Ukraine in the field of ensuring the energy efficiency of civilian facilities. The specific energy consumption in the processes of heating/cooling of residential buildings and the sectoral situation of energy supply/energy consumption in Ukraine are analyzed.


Author(s):  
Alexander Baklanov ◽  
Nikolay Yesin ◽  
Andrey Shilyakov

Objective: To study the specificities and parameters of the new, including innovative, freight and passenger electric locomotives, produced for domestic railways in the framework of the program of creating the new locomotives in 2004–2010. To analyze pull and energy efficiency parameters of direct current and alternating current electric locomotives. To estimate the maximum weight of trains and specific energy consumption of electric locomotives. To detect the advantages of new electric locomotives in comparison with those produced earlier. To develop guidelines on efficiency improvement of the new electric locomotives. Methods: Comparative analysis, methods of grade computations, linear regression analysis, power balance method. Results: The main design features and parameters of the new and earlier produced electric locomotives were studied, the former include the power of tractive motors, traction effort, as well as the speed at continuous rating of traction. The parameters of the new and earlier produced electric locomotives were compared. Key performance indicators of electric locomotives were analyzed, such as the maximum mass of a train and specific energy consumption on traction. The comparison of the above-mentioned indicators with performance indicators of earlier produced electric locomotives was given. According to calculation data and statistical data analysis the advantages of new electric locomotives were determined over those produced earlier. High performance of regenerative breaking was shown, specifically new electric locomotives. It was detected that in winter regeneration of electric energy was significantly reduced, in case of regenerative braking of passenger electric locomotives series EP1 with alternating current, as most of energy generated by tractive motors was spent on electric heating circuits of passenger cars. Guidelines on efficiency improvement of new electric locomotives were developed. Practical importance: The conditions in which new electric locomotives would implement the available advantages were determined, compared to those produced earlier. The elaborated offers make it possible to improve pull and energy efficiency of the new electric locomotives in operation.


Sign in / Sign up

Export Citation Format

Share Document