scholarly journals An Integrated Approach to the Management of Municipal Solid Waste in a Typical City in Southwest Nigeria

Author(s):  
Olayiwola A. Oni ◽  
Toyin Omotoso ◽  
Ayowole Alo

A study of the prevailing management of municipal solid waste (MSW) generated in Ado Ekiti, a city in the southwest of Nigeria was undertaken using desk and field studies. The composition of the MSW derived from on-site waste sampling comprised plastics (28%), food (26%), paper/cardboard (14%), metal (7%), rubber (6%), textile (6%), glass (4%), leather (4%), fines less than 10mm (3%) and wood (2%). Analysis of the MSW shows that the calorific value is greater than the required minimum value of 7 MJ/kg required for applicability of incineration. However, the criteria for a regular supply of refuse derived fuel (RDF) of at least 50,000 metric tons per year required for the applicability may not be met. Furthermore, incineration of the MSW may not be applicable due to its relatively expensive installation costs. An integrated MSW framework comprising reduction, reuse, recycling, recovery (composting), incorporation of the informal sector; public private partnership (PPP); public enlightenment and enforcement of regulatory laws on sanitation is proposed. Active participation of PPP is vital to the implementation of the framework. An engineered landfill is proposed as none exists in Ado Ekiti.

2020 ◽  
Vol 24 (3) ◽  
pp. 112-118
Author(s):  
Dace Âriņa ◽  
Rūta Bendere ◽  
Gintaras Denafas ◽  
Jānis Kalnačs ◽  
Mait Kriipsalu

AbstractThe authors determined the morphological composition of refuse derived fuel (RDF) produced in Latvia and Lithuania by manually sorting. The parameters of RDF (moisture, net calorific value, ash content, carbon, nitrogen, hydrogen, sulphur, chlorine, metals) was determined using the EN standards. Comparing obtained results with data from literature, authors have found that the content of plastic is higher but paper and cardboard is lower than typical values. Results also show that the mean parameters for RDF can be classified with the class codes: Net heating value (3); chlorine (3); mercury (1), and responds to limits stated for 3rd class of solid recovered fuel. It is recommended to separate biological waste at source to lower moisture and ash content and increase heating value for potential fuel production from waste.


Author(s):  
Mochammad Chaerul ◽  
Annisa Kusuma Wardhani

The utilization of waste into fuel (Refuse Derived Fuel, RDF) is an alternative to overcome the problem of municipal solid waste (MSW). Many processes can be applied to produce RDF including through biodrying process. Biodrying is a part of Mechanical-Biological Treatment (MBT) aiming to reduce water content in the waste by utilizing heat generated from microorganism activities while degrading organic matter in the waste, thus the calorific value will increase. The paper aims to make a review from various research papers on biodrying process published in scientific journals, so it becomes one of reference on further research on biodrying process by considering the characteristics of waste in Indonesia. The review has been conducted by focusing on several important aspects on the research such as operation principle, reactor design configuration, parameters to be examined, and the characteristics of feed and product.


2020 ◽  
pp. 0734242X2096183
Author(s):  
Ing-Jia Chiou ◽  
Ching-Ho Chen

Landfill sites are hard to obtain in Taiwan. Municipal solid waste (MSW) in the closed landfill sites has high combustible content and calorific value (CV). Therefore, activating the closed landfill sites as municipal mine sites to prolong their service life will promote a sustainable environment. This study transforms combustibles from the closed municipal landfill sites of different landfill ages (LAs) into refuse-derived fuel (RDF) through pretreatment and squeeze forming equipment, so to investigate the characteristics of the MSW of different LAs, and the manufacturing conditions and firing behaviour of RDF. The results indicate that the proportion of the combustibles in MSW declines as the LA grows, and therefore the proportions of both incombustible materials and soil and debris correspondingly increased. The LA of the MSW is thus negatively correlated with the CV. The MSW at the LA of 10 years still has high potential as fuel material. The fixed carbon initiation temperatures (i.e. ignition temperatures) of combustibles of the MSW at the LAs of 1 year, 5 years and 10 years are 259°C, 256°C and 245°C, respectively. The CV and flame temperature of the RDF increase slightly with the increasing squeeze temperature (ST) at 100–120°C, but it will decrease when the ST reaches 130°C. Therefore, this study recommends the squeeze pressure of the RDF as 41.65 ± 8.24 kg cm−2, ST 110°C and combustible size 10–20 mm.


2021 ◽  
Vol 11 (3) ◽  
pp. 1219
Author(s):  
Botagoz Kuspangaliyeva ◽  
Botakoz Suleimenova ◽  
Dhawal Shah ◽  
Yerbol Sarbassov

Efficient waste management, including proper utilization of municipal solid waste (MSW), is imperative for a sustainable future. Among several management options, pyrolysis and combustion of MSW has regained interest because of improved combustion techniques. This work aims to investigate the thermal conversion and combustion characteristics of refuse derived solid fuel (RDF) samples and its individual compounds collected from Nur-Sultan’s MSW landfills. The waste-derived solid RDF samples originally consist of textile, mixed paper, and mixed plastic. In particular, the samples, including RDF and its three constituent components, were analyzed in the temperature range of 25 to 900 °C, at three different heating rates, by thermogravimetric method. The gross calorific value for RDF derived from Nur-Sultan’s MSW was determined to be 23.4 MJ/kg. The weight loss rates of the samples, differential thermogravimetry (DTG), and kinetic analysis were compared between individual RDF components and for the mixed RDF. Combustion kinetics models were calculated using Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sunose (KAS), and Friedman methods. The results revealed that first decomposition of RDF samples was observed at the range of 180–370 °C. Moreover, the activation energy for conversion of RDF was observed to be the highest among the constituent components and gradually decreased from 370 to 140 kJ/kmol.


2021 ◽  
Vol 10 (1) ◽  
pp. 09-15
Author(s):  
I Wayan Koko Suryawan ◽  
I Made Wahyu Wijaya ◽  
Novi Kartika Sari ◽  
Iva Yenis Septiariva ◽  
Nurulbaiti Listyendah Zahra

The generation of municipal solid waste (MSW) in Bali has various environmental impacts. One of the updates on sustainable waste processing is the RDF treatment plant processing. Before carrying out the processing, MSW characterization is needed because each region has a diverse composition. The processing of MSW into RDF provides benefits for achieving MSW reduction targets, renewable energy use, and the reduction of greenhouse gas (GHG) emissions. For this reason, this study was conducted to determine the potential of MSW in Bali as an alternative to renewable fuel and its potential to reduce GHG. MSW's potential calorific value as a raw material for RDF in Bali can reach 9.58 - 17.71 MJ/kg. The implementation of processing waste into RDF in pellets has shown a calorific value of ± 3904 - 4945 kkcal/kg. Implementing MSW processing into RDF in Bali can reduce GHG by 178 - 330 times compared to open dumping.


2020 ◽  
Vol 12 (11) ◽  
pp. 4645
Author(s):  
Hamid Rezaei ◽  
Fahimeh Yazdan Panah ◽  
C. Jim Lim ◽  
Shahab Sokhansanj

The combustible fraction of municipal solid waste (MSW) is called refuse-derived fuel (RDF). RDF is a blend of heterogeneous materials and thus its handling is challenging. Pelletization is an efficient treatment to minimize the heterogeneity. In this research, typical RDF compositions were prepared by mixing several mass fractions of paper, plastic, household organic and wood. The collected compositions were ground, wetted to 20% moisture content (wet basis) and pelletized. Increasing the plastic content from 20% to 40% reduced the pelletization energy but increased the pellet’s calorific value. Pellets with higher plastic content generated more dust when exposed to shaking. Making durable pellets with 40% plastic content needed an increase in die temperature from 80 °C to 100 °C. Increasing the paper content from 30% to 50% increased the durability but consumed higher energy to form pellets. Paper particles increased the friction between pellet’s surface and die wall as was evident from expulsion energy. Force versus displacement curve for material compression revealed that the RDF compositions have rigid material characteristics.


2016 ◽  
Vol 99 ◽  
pp. 1253-1261 ◽  
Author(s):  
V.S. Yaliwal ◽  
N.R. Banapurmath ◽  
R.S. Hosmath ◽  
S.V. Khandal ◽  
Wojciech M. Budzianowski

2010 ◽  
Vol 64 (2) ◽  
Author(s):  
Agnieszka Zawadzka ◽  
Liliana Krzystek ◽  
Stanisław Ledakowicz

AbstractTo carry out autothermal drying processes during the composting of biomass, a horizontal tubular reactor was designed and tested. A biodrying tunnel of the total capacity of 240 dm3 was made of plastic material and insulated with polyurethane foam to prevent heat losses. Municipal solid waste and structural plant material were used as the input substrate. As a result of autothermal drying processes, moisture content decreased by 50 % of the initial moisture content of organic waste of about 800 g kg−1. In the tested cycles, high temperatures of biodried waste mass were achieved (54–56°C). An appropriate quantity of air was supplied to maintain a satisfactory level of temperature and moisture removal in the biodried mass and high energy content in the final product. The heat of combustion of dried waste and its calorific value were determined in a calorimeter. Examinations of pyrolysis and gasification of dried waste confirmed their usefulness as biofuel of satisfactory energy content.


2018 ◽  
Vol 37 (6) ◽  
pp. 578-589 ◽  
Author(s):  
Imane Boumanchar ◽  
Younes Chhiti ◽  
Fatima Ezzahrae M’hamdi Alaoui ◽  
Abdelaziz Sahibed-dine ◽  
Fouad Bentiss ◽  
...  

Municipal solid waste (MSW) management presents an important challenge for all countries. In order to exploit them as a source of energy, a knowledge of their calorific value is essential. In fact, it can be experimentally measured by an oxygen bomb calorimeter. This process is, however, expensive. In this light, the purpose of this paper was to develop empirical models for the prediction of MSW higher heating value (HHV) from ultimate analysis. Two methods were used: multiple regression analysis and genetic programming formalism. Both techniques gave good results. Genetic programming, however, provides more accuracy compared to published works in terms of a great correlation coefficient (CC) and a low root mean square error (RMSE).


Sign in / Sign up

Export Citation Format

Share Document