scholarly journals Potential of Energy Municipal Solid Waste (MSW) to Become Refuse Derived Fuel (RDF) in Bali Province, Indonesia

2021 ◽  
Vol 10 (1) ◽  
pp. 09-15
Author(s):  
I Wayan Koko Suryawan ◽  
I Made Wahyu Wijaya ◽  
Novi Kartika Sari ◽  
Iva Yenis Septiariva ◽  
Nurulbaiti Listyendah Zahra

The generation of municipal solid waste (MSW) in Bali has various environmental impacts. One of the updates on sustainable waste processing is the RDF treatment plant processing. Before carrying out the processing, MSW characterization is needed because each region has a diverse composition. The processing of MSW into RDF provides benefits for achieving MSW reduction targets, renewable energy use, and the reduction of greenhouse gas (GHG) emissions. For this reason, this study was conducted to determine the potential of MSW in Bali as an alternative to renewable fuel and its potential to reduce GHG. MSW's potential calorific value as a raw material for RDF in Bali can reach 9.58 - 17.71 MJ/kg. The implementation of processing waste into RDF in pellets has shown a calorific value of ± 3904 - 4945 kkcal/kg. Implementing MSW processing into RDF in Bali can reduce GHG by 178 - 330 times compared to open dumping.

2020 ◽  
Vol 24 (3) ◽  
pp. 112-118
Author(s):  
Dace Âriņa ◽  
Rūta Bendere ◽  
Gintaras Denafas ◽  
Jānis Kalnačs ◽  
Mait Kriipsalu

AbstractThe authors determined the morphological composition of refuse derived fuel (RDF) produced in Latvia and Lithuania by manually sorting. The parameters of RDF (moisture, net calorific value, ash content, carbon, nitrogen, hydrogen, sulphur, chlorine, metals) was determined using the EN standards. Comparing obtained results with data from literature, authors have found that the content of plastic is higher but paper and cardboard is lower than typical values. Results also show that the mean parameters for RDF can be classified with the class codes: Net heating value (3); chlorine (3); mercury (1), and responds to limits stated for 3rd class of solid recovered fuel. It is recommended to separate biological waste at source to lower moisture and ash content and increase heating value for potential fuel production from waste.


2021 ◽  
Vol 22 (2) ◽  
pp. 10-20
Author(s):  
Amadou Dioulde Donghol Diallo ◽  
Ma’an Fahmi Rashid Alkhatib ◽  
Md Zahangir Alam ◽  
Maizirwan Mel

Empty fruit bunch (EFB), a biomass-based waste, was deemed a potential replacement for fossil fuel. It is renewable and carbon neutral. The efficient management of this potential energy will help to deal with the problem associated with fossil fuels. However, a key parameter for evaluating the quality of raw material (EFB) as a fuel in energy applications is the calorific value (CV). When this CV is low, then its potential utilization as feedstock will be restricted. To tackle this shortcoming, we propose to add municipal solid waste to enhance energetic value. Thus, two major issues will be solved: managing solid residues and contributing an alternative energy source. This study aimed to investigate the possibility of mixing EFB and municipal solid waste (MSW) to make clean energy that is conscious of the environment (climate change) and sustainable development. The selected MSW, comprising of plastics, textiles, foam, and cardboard, were mixed, with EFB at various ratios. Proximate analysis was used to determine moisture content, ash, volatiles, and fixed carbon, whilst elemental analysis, is used to determine CHNS/O for MSW, EFB and their various mixtures. The CV of each element was also measured. The research revealed a significant increase in the calorific value of EFB by mixing it with MSW according to MSW/EFB ratios: 0.25; 0.42; 0.66; 1.00 and 1.50 the corresponding calorific values in (MJ/kg) were 19.77; 21.22; 22.67; 27.04 and 28.47 respectively. While the calorific value of pure EFB was 16.86 MJ/kg, the mixing of EFB with MSW promoted the increase in the CV of EFB to an average of 23.83MJ/kg. Another potential environmental benefit of applying this likely fuel was the low chlorine (0.21 wt. % to 0.95 wt. %) and sulfur concentrations (0.041 wt. % to 0.078 wt.%). This potential fuel could be used as solid refuse fuel (SRF) or refuse-derived fuel (RDF) in a pyrolysis or gasification process with little to no environmental effects. ABSTRAK: Tandan buah kosong (EFB), sisa berasaskan biojisim, adalah berpotensi sebagai pengganti bahan bakar fosil. Ia boleh diperbaharui dan karbon neutral. Pengurusan berkesan pada potensi tenaga ini dapat membantu mengatasi masalah melibatkan bahan bakar fosil. Namun, kunci parameter bagi menilai kualiti bahan mentah (EFB) sebagai bahan bakar dalam aplikasi tenaga adalah nilai kalori (CV). Apabila CV rendah, potensi menjadi stok suapan adalah terhad. Sebagai penyelesaian, kajian ini mencadangkan sisa pepejal bandaran ditambah bagi meningkatkan nilai tenaga. Oleh itu, dua isu besar dapat diselesaikan: mengurus sisa pepejal dan menambah sumber tenaga alternatif. Kajian ini bertujuan mengkaji potensi campuran tandan buah kosong (EFB) dan sisa pepejal bandaran (MSW) bagi menghasilkan tenaga bersih dari sudut persekitaran (perubahan iklim) dan pembangunan lestari. Pemilihan MSW, terdiri daripada plastik, tekstil, gabus dan kadbod, dicampurlan dengan pelbagai nisbah EFB. Analisis proksimat telah digunakan bagi mendapatkan  kandungan kelembapan, abu, ruapan, dan karbon tetap, manakala analisis asas telah digunakan bagi mendapatkan CHNS/O bersama MSW, EFB dan pelbagai campuran lain. Nilai kalori (CV) setiap elemen turut diukur. Dapatan kajian menunjukkan penambahan ketara dalam nilai kalori EFB dengan campuran bersama MSW berdasarkan nisbah MSW/EFB 0.25; 0.42; 0.66; 1.00 dan 1.50 nilai kalori sepadan (MJ/kg) adalah 19.77; 21.22; 22.67; 27.04 dan 28.47 masing-masing. Manakala nilai kalori EFB tulen adalah 16.86 MJ/kg, campuran EFB dan MSW menunjukkan kenaikan CV dengan EFB pada purata 23.83MJ/kg. Antara potensi semula jadi lain adalah dengan mencampurkan bahan bakar ini dengan kalori rendah (0.21 wt. % kepada 0.95 wt. %) dan kepekatan sulfur (0.041 wt. % kepada 0.078 wt.%). Bahan bakar ini berpotensi sebagai bahan bakar pepejal sampah (SRF) atau bahan bakar yang terhasil dari pepejal sampah (RDF) melalui proses pirolisis atau proses gasifikasi yang sedikit atau tiada kesan langsung terhadap persekitaran.


Author(s):  
Mochammad Chaerul ◽  
Annisa Kusuma Wardhani

The utilization of waste into fuel (Refuse Derived Fuel, RDF) is an alternative to overcome the problem of municipal solid waste (MSW). Many processes can be applied to produce RDF including through biodrying process. Biodrying is a part of Mechanical-Biological Treatment (MBT) aiming to reduce water content in the waste by utilizing heat generated from microorganism activities while degrading organic matter in the waste, thus the calorific value will increase. The paper aims to make a review from various research papers on biodrying process published in scientific journals, so it becomes one of reference on further research on biodrying process by considering the characteristics of waste in Indonesia. The review has been conducted by focusing on several important aspects on the research such as operation principle, reactor design configuration, parameters to be examined, and the characteristics of feed and product.


2020 ◽  
pp. 0734242X2096183
Author(s):  
Ing-Jia Chiou ◽  
Ching-Ho Chen

Landfill sites are hard to obtain in Taiwan. Municipal solid waste (MSW) in the closed landfill sites has high combustible content and calorific value (CV). Therefore, activating the closed landfill sites as municipal mine sites to prolong their service life will promote a sustainable environment. This study transforms combustibles from the closed municipal landfill sites of different landfill ages (LAs) into refuse-derived fuel (RDF) through pretreatment and squeeze forming equipment, so to investigate the characteristics of the MSW of different LAs, and the manufacturing conditions and firing behaviour of RDF. The results indicate that the proportion of the combustibles in MSW declines as the LA grows, and therefore the proportions of both incombustible materials and soil and debris correspondingly increased. The LA of the MSW is thus negatively correlated with the CV. The MSW at the LA of 10 years still has high potential as fuel material. The fixed carbon initiation temperatures (i.e. ignition temperatures) of combustibles of the MSW at the LAs of 1 year, 5 years and 10 years are 259°C, 256°C and 245°C, respectively. The CV and flame temperature of the RDF increase slightly with the increasing squeeze temperature (ST) at 100–120°C, but it will decrease when the ST reaches 130°C. Therefore, this study recommends the squeeze pressure of the RDF as 41.65 ± 8.24 kg cm−2, ST 110°C and combustible size 10–20 mm.


2021 ◽  
Vol 11 (3) ◽  
pp. 1219
Author(s):  
Botagoz Kuspangaliyeva ◽  
Botakoz Suleimenova ◽  
Dhawal Shah ◽  
Yerbol Sarbassov

Efficient waste management, including proper utilization of municipal solid waste (MSW), is imperative for a sustainable future. Among several management options, pyrolysis and combustion of MSW has regained interest because of improved combustion techniques. This work aims to investigate the thermal conversion and combustion characteristics of refuse derived solid fuel (RDF) samples and its individual compounds collected from Nur-Sultan’s MSW landfills. The waste-derived solid RDF samples originally consist of textile, mixed paper, and mixed plastic. In particular, the samples, including RDF and its three constituent components, were analyzed in the temperature range of 25 to 900 °C, at three different heating rates, by thermogravimetric method. The gross calorific value for RDF derived from Nur-Sultan’s MSW was determined to be 23.4 MJ/kg. The weight loss rates of the samples, differential thermogravimetry (DTG), and kinetic analysis were compared between individual RDF components and for the mixed RDF. Combustion kinetics models were calculated using Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sunose (KAS), and Friedman methods. The results revealed that first decomposition of RDF samples was observed at the range of 180–370 °C. Moreover, the activation energy for conversion of RDF was observed to be the highest among the constituent components and gradually decreased from 370 to 140 kJ/kmol.


Author(s):  
Olayiwola A. Oni ◽  
Toyin Omotoso ◽  
Ayowole Alo

A study of the prevailing management of municipal solid waste (MSW) generated in Ado Ekiti, a city in the southwest of Nigeria was undertaken using desk and field studies. The composition of the MSW derived from on-site waste sampling comprised plastics (28%), food (26%), paper/cardboard (14%), metal (7%), rubber (6%), textile (6%), glass (4%), leather (4%), fines less than 10mm (3%) and wood (2%). Analysis of the MSW shows that the calorific value is greater than the required minimum value of 7 MJ/kg required for applicability of incineration. However, the criteria for a regular supply of refuse derived fuel (RDF) of at least 50,000 metric tons per year required for the applicability may not be met. Furthermore, incineration of the MSW may not be applicable due to its relatively expensive installation costs. An integrated MSW framework comprising reduction, reuse, recycling, recovery (composting), incorporation of the informal sector; public private partnership (PPP); public enlightenment and enforcement of regulatory laws on sanitation is proposed. Active participation of PPP is vital to the implementation of the framework. An engineered landfill is proposed as none exists in Ado Ekiti.


2013 ◽  
Vol 12 (2) ◽  
pp. 34
Author(s):  
J. A. Meystre ◽  
R. J. Silva

The objective of this paper is to present an analysis of coprocessing in a cement production plant using Municipal Solid Waste - MSW as a secondary fuel and show the main advantages that burn into a incineration plant. The manufacture of Portland cement is a process that requires a large consumption of thermal and electrical energy and front of the immense worldwide energetic demand has increased its value every day. The typical operating cost involving this energy achieves 40% of the final product and due to increasing world consumption justifies the efforts to reduce the costs associated with its production. The use of high efficiency equipment coupled with the replacement of fossil fuels and conventional raw material for alternative products has given good results. The method of disposal of MSW in landfills in large urban centers is being used less and less. The creation of environmental laws increasingly severe shortages of allied areas not disturbed and the high cost of construction and operation of landfills hinders its viability. Moreover, there is a problem related to the emissions  of gaseous and liquid effluents that help raise the cost for its control and treatment. The MSW, when recovered and separated, can become recyclable products and as energy sources. After separation of the usable material (organic matter and recyclable), remaining MSW materials with sufficient calorific value can be used in kilns to produce clinker. Moreover, the ash resulting from combustion may be incorporated in the clinker decreasing the initial amount of raw material. The use of MSW as alternative fuel has shown to be feasible in the clinker kiln, but their use is still limited by their availability, since their segregation is rarely practiced. The substitution of alternative inputs introduce restrictions to the process which must be safely handled in order to ensure the minimum quality and productivity of cement production plants. The use of MSW must have a thorough characterization of your composition, because of directly influences in the final product.


2020 ◽  
Vol 12 (11) ◽  
pp. 4645
Author(s):  
Hamid Rezaei ◽  
Fahimeh Yazdan Panah ◽  
C. Jim Lim ◽  
Shahab Sokhansanj

The combustible fraction of municipal solid waste (MSW) is called refuse-derived fuel (RDF). RDF is a blend of heterogeneous materials and thus its handling is challenging. Pelletization is an efficient treatment to minimize the heterogeneity. In this research, typical RDF compositions were prepared by mixing several mass fractions of paper, plastic, household organic and wood. The collected compositions were ground, wetted to 20% moisture content (wet basis) and pelletized. Increasing the plastic content from 20% to 40% reduced the pelletization energy but increased the pellet’s calorific value. Pellets with higher plastic content generated more dust when exposed to shaking. Making durable pellets with 40% plastic content needed an increase in die temperature from 80 °C to 100 °C. Increasing the paper content from 30% to 50% increased the durability but consumed higher energy to form pellets. Paper particles increased the friction between pellet’s surface and die wall as was evident from expulsion energy. Force versus displacement curve for material compression revealed that the RDF compositions have rigid material characteristics.


2017 ◽  
Vol 19 (3) ◽  
pp. 191 ◽  
Author(s):  
Md. Rezaul Karim ◽  
Megumi Kuraoka ◽  
Takaya Higuchi ◽  
Masahiko Sekine ◽  
Tsuyoshi Imai

2016 ◽  
Vol 99 ◽  
pp. 1253-1261 ◽  
Author(s):  
V.S. Yaliwal ◽  
N.R. Banapurmath ◽  
R.S. Hosmath ◽  
S.V. Khandal ◽  
Wojciech M. Budzianowski

Sign in / Sign up

Export Citation Format

Share Document