scholarly journals Refuse Derived Fuel (RDF) from Urban Waste using Biodrying Process: Review

Author(s):  
Mochammad Chaerul ◽  
Annisa Kusuma Wardhani

The utilization of waste into fuel (Refuse Derived Fuel, RDF) is an alternative to overcome the problem of municipal solid waste (MSW). Many processes can be applied to produce RDF including through biodrying process. Biodrying is a part of Mechanical-Biological Treatment (MBT) aiming to reduce water content in the waste by utilizing heat generated from microorganism activities while degrading organic matter in the waste, thus the calorific value will increase. The paper aims to make a review from various research papers on biodrying process published in scientific journals, so it becomes one of reference on further research on biodrying process by considering the characteristics of waste in Indonesia. The review has been conducted by focusing on several important aspects on the research such as operation principle, reactor design configuration, parameters to be examined, and the characteristics of feed and product.

2020 ◽  
Vol 24 (3) ◽  
pp. 112-118
Author(s):  
Dace Âriņa ◽  
Rūta Bendere ◽  
Gintaras Denafas ◽  
Jānis Kalnačs ◽  
Mait Kriipsalu

AbstractThe authors determined the morphological composition of refuse derived fuel (RDF) produced in Latvia and Lithuania by manually sorting. The parameters of RDF (moisture, net calorific value, ash content, carbon, nitrogen, hydrogen, sulphur, chlorine, metals) was determined using the EN standards. Comparing obtained results with data from literature, authors have found that the content of plastic is higher but paper and cardboard is lower than typical values. Results also show that the mean parameters for RDF can be classified with the class codes: Net heating value (3); chlorine (3); mercury (1), and responds to limits stated for 3rd class of solid recovered fuel. It is recommended to separate biological waste at source to lower moisture and ash content and increase heating value for potential fuel production from waste.


2021 ◽  
Vol 5 (2) ◽  
pp. 9-16
Author(s):  
Imron Rosyadi ◽  
Ni Ketut Caturwati ◽  
Ahmad Fauzi

The increase in the population of Indonesia is proportional to the increase in the amount of waste produced. Municipal solid waste (MSW) especially organic waste, can be used as solid fuel by means of the torefaction process. Torefaction is a thermo-chemical heat treatment method for biomass conversion that takes place at a temperature of 200oC to 300oC under conditions of atmospheric pressure and in the absence of oxygen. The purpose of this study was to determine the effect of moisture content on calorific, proximate and ultimate values ​​of torefaction samples using municipal solid waste. Setting the water content in the mixed sample (30% rice + 70% wood) with variations in moisture content of 30%, 40%, and 50%; and rice and wood samples with variations in moisture content of 40% and 50%. The torefaction was carried out at a temperature of 300oC for one hour and  inert gas  N2. Torefaction products have been tested contain of the calorific value, proximate testing, and ultimate testing. The results obtained were the best calorific value in the rice sample, the moisture content of 40% was 6351.1 cal / g or equivalent to sub-bituminous coal. The proximate and ultimate results of the best heating value are rice samples with 40% moisture content, fixed carbon 62.95%, volatile matter 27.85%, moisture 7.06%, ash 2.14%, carbon 71.85%, hydrogen. 2.80%, nitrogen 3.17%, and sulfur 0.05%. The calorific value calculation method that is almost close to the test results is the Dulong method, with an average error percentage of 1.63%.


2020 ◽  
pp. 0734242X2096183
Author(s):  
Ing-Jia Chiou ◽  
Ching-Ho Chen

Landfill sites are hard to obtain in Taiwan. Municipal solid waste (MSW) in the closed landfill sites has high combustible content and calorific value (CV). Therefore, activating the closed landfill sites as municipal mine sites to prolong their service life will promote a sustainable environment. This study transforms combustibles from the closed municipal landfill sites of different landfill ages (LAs) into refuse-derived fuel (RDF) through pretreatment and squeeze forming equipment, so to investigate the characteristics of the MSW of different LAs, and the manufacturing conditions and firing behaviour of RDF. The results indicate that the proportion of the combustibles in MSW declines as the LA grows, and therefore the proportions of both incombustible materials and soil and debris correspondingly increased. The LA of the MSW is thus negatively correlated with the CV. The MSW at the LA of 10 years still has high potential as fuel material. The fixed carbon initiation temperatures (i.e. ignition temperatures) of combustibles of the MSW at the LAs of 1 year, 5 years and 10 years are 259°C, 256°C and 245°C, respectively. The CV and flame temperature of the RDF increase slightly with the increasing squeeze temperature (ST) at 100–120°C, but it will decrease when the ST reaches 130°C. Therefore, this study recommends the squeeze pressure of the RDF as 41.65 ± 8.24 kg cm−2, ST 110°C and combustible size 10–20 mm.


2021 ◽  
Vol 11 (3) ◽  
pp. 1219
Author(s):  
Botagoz Kuspangaliyeva ◽  
Botakoz Suleimenova ◽  
Dhawal Shah ◽  
Yerbol Sarbassov

Efficient waste management, including proper utilization of municipal solid waste (MSW), is imperative for a sustainable future. Among several management options, pyrolysis and combustion of MSW has regained interest because of improved combustion techniques. This work aims to investigate the thermal conversion and combustion characteristics of refuse derived solid fuel (RDF) samples and its individual compounds collected from Nur-Sultan’s MSW landfills. The waste-derived solid RDF samples originally consist of textile, mixed paper, and mixed plastic. In particular, the samples, including RDF and its three constituent components, were analyzed in the temperature range of 25 to 900 °C, at three different heating rates, by thermogravimetric method. The gross calorific value for RDF derived from Nur-Sultan’s MSW was determined to be 23.4 MJ/kg. The weight loss rates of the samples, differential thermogravimetry (DTG), and kinetic analysis were compared between individual RDF components and for the mixed RDF. Combustion kinetics models were calculated using Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sunose (KAS), and Friedman methods. The results revealed that first decomposition of RDF samples was observed at the range of 180–370 °C. Moreover, the activation energy for conversion of RDF was observed to be the highest among the constituent components and gradually decreased from 370 to 140 kJ/kmol.


2021 ◽  
Vol 18 (2) ◽  
pp. 9-17
Author(s):  
Tandra Mohanta ◽  
Sudha Goel

In recent times, there have been an enormous increase in the number and capacity of mechanical–biological treatment (MBT) plants all over the world owing to the need for finding sustainable solutions to the mixed municipal solid waste (MSW) problem. The objective of this study was to understand the technical and financial aspects of two MBT plants located in Bengaluru, India. Both plants treat mixed MSW. Of the two plants in Bengaluru, only one is financially stable and operating since 1975. The major product generated by this plant is compost. The second one was started in 2015 and closed after a year of operation. It was generating refuse-derived fuel (RdF) and compost. Compost and RdF generated by these MBT plants have limited market acceptance. Major challenges faced by both MBT plants in Bengaluru are untrained human resources, limited market demand for their products, budgetary constraints, inadequate infrastructure and unreliable MSW generation and composition data.


2018 ◽  
Vol 2 (2) ◽  
pp. 93-103
Author(s):  
Ade Ariesmayana ◽  
Fitri Dwirani

ABSTRAK Penelitian ini memberikan solusi dalam alternatif energi terbarukan dengan memanfaatkan sampah kota (municipal solid waste) dari sumber Tempat Pembuangan Akhir  Sampah (TPA) Cilowong, Kota Serang. Penelitian ini bertujuan untuk menguji karakteristik sampah Kota Serang, yang meliputi Uji  Proksimat (proximate analysis), Uji Ultimat (ultimate analysis), Kadar Air Sampah dan Uji Nilai Kalor, serta mengetahui seberapa potensialkah timbulan sampah Kota Serang sebagai energi alternatif pengganti bahan bakar fosil. Penelitian dilakukan pada kawasan TPA Cilowong, Kota Serang. Pada laporan ini dibatasi hanya pada perhitungan Kadar Air Sampah. Metode penelitian yang  digunakan adalah dengan pengujian laboratorium dan analisis kelayakan karakteristik sampah. Teknik penelitian yaitu  dengan melakukan survei dan obervasi ke TPAS Cilowong serta wawancara mendalam dengan dinas terkait dan masyarakat yang tinggal di sekitar kawasan tersebut. Hasil penelitian ini adalah kelayakan sampah kota Serang sebagai energi alternatif pengganti bahan bakar fosil.   Kata Kunci: Energi Alternatif, Kadar Air Sampah, TPA Cilowong     ABSTRACT This research provides solutions in alternative renewable energy by utilizing municipal solid waste from the source of the Cilowong Waste Disposal Site (TPA), Serang City. This study aims to examine the characteristics of the city of Serang waste, which includes the Proximate Test (proximate analysis), Ultimate Analysis, Waste Water Content and Calorific Value Test, and find out the potential waste generation of Serang City as an alternative energy to replace fossil fuels. The study was conducted in the Cilowong landfill area, Serang City. This report is limited only to the calculation of Waste Water Content. The research method used is laboratory testing and analysis of the characteristics of waste characteristics. The research technique is by conducting surveys and observations to the Cilowong TPAS as well as in-depth interviews with related agencies and the people living around the area. The results of this study are the feasibility of municipal waste as an alternative energy substitute for fossil fuels.   Keywords: Alternative Energy, Waste Water Content, Cilowong Landfill


2021 ◽  
Vol 25 (1) ◽  
pp. 176-187
Author(s):  
Badrus Zaman ◽  
Budi Prasetyo Samadikun ◽  
Nurandani Hardyanti ◽  
Purwono Purwono

Abstract Municipal solid waste (MSW) is an energy resource with sufficient energy/calorific value, making it a suitable substitute for fuel. This study investigated the effect of air flow rate on the MSW calorific value, the hemicellulose content, and the MSW degradation rate in a biodrying process. Four biodrying reactors equipped with flowrate and temperature recorders were used in the study. The air flow rate was varied as follows: 0 L/min/kg, 2 L/min/kg, 4 L/min/kg, and 6 L/min/kg, corresponding to reactors R1, R2, R3, and R4, respectively. The calorific value, water content, hemicellulose content, organic C content, and total N were measured on day 1, day 15, and day 30. The results showed that the biodrying process could increase the calorific value by 55.3 %, whereas the control reactor could increase the calorific value by only 4.7 %. The highest calorific value was 17.63 MJ/kg, at an air flow rate of 4 L/min/kg. The air flow rate had a significant effect on increasing the calorific value (sig.<0.05). The highest temperature in the biodrying process was 41 °C. The final MSW moisture content was 27.28 %, resulting from R4. According to the statistical test results, the air flow rate had a significant influence on the water content parameters. Hemicellulose degradation due to air flow rate reached 80–85 %. The air flow rate did not significantly influence the hemicellulose degradation (sig.>0.05). The biodrying process is the suitable method to increase the calorific value of MSW while reducing its water content; thus, the process promotes the realization of waste to energy as refuse-derived fuel.


2021 ◽  
Vol 10 (1) ◽  
pp. 09-15
Author(s):  
I Wayan Koko Suryawan ◽  
I Made Wahyu Wijaya ◽  
Novi Kartika Sari ◽  
Iva Yenis Septiariva ◽  
Nurulbaiti Listyendah Zahra

The generation of municipal solid waste (MSW) in Bali has various environmental impacts. One of the updates on sustainable waste processing is the RDF treatment plant processing. Before carrying out the processing, MSW characterization is needed because each region has a diverse composition. The processing of MSW into RDF provides benefits for achieving MSW reduction targets, renewable energy use, and the reduction of greenhouse gas (GHG) emissions. For this reason, this study was conducted to determine the potential of MSW in Bali as an alternative to renewable fuel and its potential to reduce GHG. MSW's potential calorific value as a raw material for RDF in Bali can reach 9.58 - 17.71 MJ/kg. The implementation of processing waste into RDF in pellets has shown a calorific value of ± 3904 - 4945 kkcal/kg. Implementing MSW processing into RDF in Bali can reduce GHG by 178 - 330 times compared to open dumping.


Author(s):  
Olayiwola A. Oni ◽  
Toyin Omotoso ◽  
Ayowole Alo

A study of the prevailing management of municipal solid waste (MSW) generated in Ado Ekiti, a city in the southwest of Nigeria was undertaken using desk and field studies. The composition of the MSW derived from on-site waste sampling comprised plastics (28%), food (26%), paper/cardboard (14%), metal (7%), rubber (6%), textile (6%), glass (4%), leather (4%), fines less than 10mm (3%) and wood (2%). Analysis of the MSW shows that the calorific value is greater than the required minimum value of 7 MJ/kg required for applicability of incineration. However, the criteria for a regular supply of refuse derived fuel (RDF) of at least 50,000 metric tons per year required for the applicability may not be met. Furthermore, incineration of the MSW may not be applicable due to its relatively expensive installation costs. An integrated MSW framework comprising reduction, reuse, recycling, recovery (composting), incorporation of the informal sector; public private partnership (PPP); public enlightenment and enforcement of regulatory laws on sanitation is proposed. Active participation of PPP is vital to the implementation of the framework. An engineered landfill is proposed as none exists in Ado Ekiti.


Sign in / Sign up

Export Citation Format

Share Document