scholarly journals In-vitro Evaluation of Antiviral Activity of Moringa oleifera Extracts against Polio virus

Author(s):  
Halidu Mhya Adamu ◽  
Mahmud Yerima Iliyasu ◽  
Mohammed Nuru Yakubu ◽  
Adamu Babayo Samaila ◽  
Ahmed Faruk Umar

Background: Moringa oleifera plant parts extract have been utilized tremendously in traditional medicine, having various pharmaceutical activities such as antifungal, antibacterial and antiviral properties. Aim: This study was carried out to evaluate antiviral activity of aqueous extract of Moringa leaves, seeds and flowers against Polio virus isolates (Vaccine Strains P1&P3), MDG-17-04852; MDG-17-04881. Study Design: This is a baseline study carried out to determine the efficacy of Moringa oleifera in the treatment of poliomyelitis. Place and Duration of Study: This study was carried out at the University of Maiduguri Teaching Hospital Maiduguri and Abubakar Tafawa Balewa University, Bauchi from September 2018 to October, 2019. Methods: Phytochemical substances was extracted and screened from the Moringa using standard laboratory techniques. Continuous cell line L20B cells was used to isolate polio virus. Polio virus stock was prepared and titration was carried out to determine TCID50 by Kerber’s formula, L-d(S - 0.5). Cytotoxicity of the extracts was evaluated using the end-point cytopathic effect assay. Antiviral assay and Polio virus Intratypic Differentiation (ITD) was performed using Real-Time PCR. Results: The results revealed present of Tannins in leaves and flowers, Alkaloids and Saponins in all the extracts, Glycosides and Steroids in leaves and Flavonoids in flowers only. Cytotoxicity of the extracts shows 50% effects in 100mg and 50mg concentrations, while 33.3% and 16.7% was observed in 25mg and 12.5mg (P>.05). The titration of the tissue culture infective dose 50% (TCID50) shows that Polio virus type 1and 3 had a titre value of 106.5 and 106.25 respectively. The ITD results observed presence of Sl1 and Sl3 from the extracts. Conclusion: This study found that the Moringa extracts did not neutralized the Polio virus strains studied, as the phytochemicals show no antiviral activity. Therefore further study is needed in this area to ascertain its antiviral potentials against poliomyelitis.

2020 ◽  
Vol 11 ◽  
pp. e3313
Author(s):  
Raphael Reis Da Silva ◽  
Rafaela Ribeiro de Souza ◽  
Mairon Coimbra ◽  
Fernanda Nery ◽  
Amauri Alvarenga ◽  
...  

All plant parts of the Moringa oleifera can contain relevant concentrations of phytochemicals with health benefits. Plants grown in vitro allow pathogen-free plant material production and rapid propagation, and this technique is widely used to obtain secondary metabolites. This study analyzed how light spectrum quality affects growth, chlorophyll, and total phenolic content in M. oleifera plants grown in vitro. M. oleifera seeds were inoculated in MS medium supplemented with 3% sucrose and 0.7% agar and were stored under a controlled temperature, humidity and photoperiod. The light conditions tested were white fluorescent lamps (WFL) and light-emitting diodes (LED: 70% red + 30% blue), both standardized with a photon flux density of 58 μmol m-2s-1. Radiation emitted by WFL and LED did not influence stem germination, height, or diameter. However, WFL provided higher total chlorophyll levels. All plant parts germinated in vitro were analyzed via high-performance liquid chromatography with a diode-array detector (HPLC-DAD), and preliminary analyses revealed preferential synthesis of gallic acid derivatives in the leaves under LED radiation. For the total phenolic content, leaves under the LED and WFL irradiations showed 3.524 ± 0.054 and 3.805 ± 0.304 micrograms, respectively, of gallic acid equivalents per milligram of dry matter (μg GAE mg-1 DM). Light quality did not interfere with phenolic compound accumulation; however, it stimulated the preferential synthesis of gallic acid derivatives in leaves grown under LED radiation, and the evidence indicated that all evaluated organs synthesized nonpolar substances.


2018 ◽  
Vol 20 (3) ◽  
pp. 201-212 ◽  
Author(s):  
Hasan Hüseyin Doğan ◽  
Sami Karagöz ◽  
Rüstem Duman

2020 ◽  
Vol 27 ◽  
Author(s):  
Leydianne Leite de Siqueira Patriota ◽  
Dayane Kelly Dias do Nascimento Santos ◽  
Bárbara Rafaela da Silva Barros ◽  
Lethícia Maria de Souza Aguiar ◽  
Yasmym Araújo Silva ◽  
...  

Background: Protease inhibitors have been isolated from plants and present several biological activities, including immunomod-ulatory action. Objective: This work aimed to evaluate a Moringa oleifera flower trypsin inhibitor (MoFTI) for acute toxicity in mice, hemolytic activity on mice erythrocytes and immunomodulatory effects on mice splenocytes. Methods: The acute toxicity was evaluated using Swiss female mice that received a single dose of the vehicle control or MoFTI (300 mg/kg, i.p.). Behavioral alterations were observed 15–240 min after administration, and survival, weight gain, and water and food consumption were analyzed daily. Organ weights and hematological parameters were analyzed after 14 days. Hemolytic activity of MoFTI was tested using Swiss female mice erythrocytes. Splenocytes obtained from BALB/c mice were cultured in the absence or presence of MoFTI for the evaluation of cell viability and proliferation. Mitochondrial membrane potential (ΔΨm) and reactive oxygen species (ROS) levels were also determined. Furthermore, the culture supernatants were analyzed for the presence of cytokines and nitric oxide (NO). Results: MoFTI did not cause death or any adverse effects on the mice except for abdominal contortions at 15–30 min after administration. MoFTI did not exhibit a significant hemolytic effect. In addition, MoFTI did not induce apoptosis or necrosis in splenocytes and had no effect on cell proliferation. Increases in cytosolic and mitochondrial ROS release, as well as ΔΨm reduction, were observed in MoFTI-treated cells. MoFTI was observed to induce TNF-α, IFN-γ, IL-6, IL-10, and NO release. Conclusion: These results contribute to the ongoing evaluation of the antitumor potential of MoFTI and its effects on other immunological targets.


2020 ◽  
Vol 16 (5) ◽  
pp. 677-688 ◽  
Author(s):  
Sandra Piras ◽  
Paola Corona ◽  
Roberta Ibba ◽  
Federico Riu ◽  
Gabriele Murineddu ◽  
...  

Background: Coxsackievirus infections are associated with cases of aseptic meningitis, encephalitis, myocarditis, and some chronic disease. Methods: A series of benzo[d][1,2,3]triazol-1(2)-yl derivatives (here named benzotriazol-1(2)-yl) (4a-i, 5a-h, 6a-e, g, i, j and 7a-f, h-j) were designed, synthesized and in vitro evaluated for cytotoxicity and antiviral activity against two important human enteroviruses (HEVs) members of the Picornaviridae family [Coxsackievirus B 5 (CVB-5) and Poliovirus 1 (Sb-1)]. Results: Compounds 4c (CC50 >100 μM; EC50 = 9 μM), 5g (CC50 >100 μM; EC50 = 8 μM), and 6a (CC50 >100 μM; EC50 = 10 μM) were found active against CVB-5. With the aim of evaluating the selectivity of action of this class of compounds, a wide spectrum of RNA (positive- and negativesense), double-stranded (dsRNA) or DNA viruses were also assayed. For none of them, significant antiviral activity was determined. Conclusion: These results point towards a selective activity against CVB-5, an important human pathogen that causes both acute and chronic diseases in infants, young children, and immunocompromised patients.


2020 ◽  
Vol 16 (6) ◽  
pp. 937-941
Author(s):  
Sharad Vats ◽  
Preeti Mehra

Background: Vector-borne diseases are quite prevalent globally and are one of the major causes of deaths due to infectious diseases. There is an availability of synthetic insecticides, however, their excessive and indiscriminate use have resulted in the emergence of resistant varieties of insects. Thus, a search for novel biopesticide has become inevitable. Methods: Rotenoids were isolated and identified from different parts of Medicago sativa L. This group of metabolites was also identified in the callus culture, and the rotenoid content was monitored during subculturing for a period of 10 months. Enhancement of the rotenoid content was evaluated by feeding precursors in a tissue culture medium. Results: Four rotenoids (elliptone, deguelin, rotenone and Dehydrorotenone) were identified, which were confirmed using spectral and chromatographic techniques. The maximum rotenoid content was found in the seeds (0.33±0.01%), followed by roots (0.31±0.01%) and minimum in the aerial parts (0.20±0.05%). A gradual decrease in the rotenoid content was observed with the ageing of subcultured tissue maintained for 10 months. The production of rotenoids was enhanced up to 2 folds in the callus culture using amino acids, Phenylalanine and Methionine as precursors as compared to the control. The LC50 value of the rotenoids was found to be 91 ppm and 162 ppm against disease vectors of malaria and Dracunculiasis, respectively. Conclusion: The study projects M. sativa as a novel source of biopesticide against the disease vectors of malaria and Dracunculiasis. The use of precursors to enhance the rotenoid content in vitro can be an effective venture from a commercial point of view.


2020 ◽  
Vol 20 (1) ◽  
pp. 69-75
Author(s):  
Santi M. Mandal ◽  
Subhanil Chakraborty ◽  
Santanu Sahoo ◽  
Smritikona Pyne ◽  
Samaresh Ghosh ◽  
...  

Background: The need for suitable antibacterial agents effective against Multi-drug resistant Gram-negative bacteria is acknowledged globally. The present study was designed to evaluate the possible antibacterial potential of an extracted compound from edible flowers of Moringa oleifera. Methods: Five different solvents were used for preparing dried flower extracts. The most effective extract was subjected to fractionation and further isolation of the active compound with the highest antibacterial effect was obtained using TLC, Column Chromatography and reverse phase- HPLC. Approaches were made for characterization of the isolated compound using FTIR, NMR and Mass spectrometry. Antibacterial activity was evaluated according to the CLSI guidelines. Results: One fraction of aqueous acetic acid extract of M. oleifera flower was found highly effective and more potent than conventional antibiotics of different classes against Multi-drug resistant Gram-negative bacilli (MDR-GNB) when compared. The phytochemical analysis of the isolated compound revealed the presence of hydrogen-bonded amine and hydroxyl groups attributable to unsaturated amides. Conclusion: The present study provided data indicating a potential for use of the flowers extract of M. oleifera in the fight against infections caused by lethal MDR-GNB. Recommendations: Aqueous acetic acid flower extract of M. oleifera is effective, in-vitro, against Gram-negative bacilli. This finding may open a scope in pharmaceutics for the development of new classes of antibiotics.


Sign in / Sign up

Export Citation Format

Share Document