scholarly journals Oral Formulation of Anticancer Agents for Colon Cancer

Author(s):  
Dipti Patel ◽  
Krishna Patel

Aims/Objective: To develop and estimate enteric-coated capsules containing mucoadhesive Microspheres of Capecitabine and Oxaliplatin to treat Colon cancer. Study Design: Box Behnken. Place and Duration of Study: Department of Pharmaceutics, Parul Institute of Pharmacy and Research, Parul University, Vadodara, between 2017 to 2021. Methodology: Capecitabine and Oxaliplatin are used as antineoplastic agents and can be delivered via the oral route of administration. For the estimation of drugs Analytical method has been developed by HPLC. Box Behnken design has been used to optimize Drug: polymer ratio (1:2), Inlet temperature 170ºC, and crosslinking agent with a 0.5 ml 1% Gluteraldehyde solution. The microspheres were successfully prepared by using the spray drying technique and evaluated. Results: The results of optimized Capecitabine microspheres were obtained as Particle size 87.91 µm ± 0.274,% yield 57.21± 1.5,% Mucoadhesion 57.21± 1.5,% entrapment efficiency 82.16± 0.725. The results of optimized Oxaliplatin microspheres were obtained as Particle size 99.88µm±0.034,% yield 56.0± 0.088,% Mucoadhesion 87.0± 0.80,% entrapment efficiency 82.61±0.085. The drug content of Capecitabine and Oxaliplatin in the filled capsule was 94.67% ±0.32 and 93.45%±0.712, respectively. % Drug release of Capecitabine and Oxaliplatin in Phosphate buffer pH 7.4 was found to be 94.83±0.22 and 96.94±0.11 respectively after 8 hrs. Stability study at 400C±20C / 75 ± 5 % RH revealed that there was no significant change in disintegration time, drug content and % CDR during 6 months. So, prepared formulation was stable during stability study.  MTT assay has been performed on the formulation of Capecitabine and Oxaliplatin microspheres for assessing the % viability of both the drugs on the Caco-2 cell line. Conclusion: The present study confirmed that prepared mucoadhesive microspheres filled with enteric-coated capsules have an antitumor effect on colon cancer cells. The formulation induced high cell death within 48 hours, and less cell viability was obtained compared to API. Six months accelerated Stability study indicates that formulation is fairly stable at storage conditions.

Author(s):  
Shyam Narayan Prasad ◽  
Hemant Kumar Patel ◽  
Abhijit V. Gothoskar

Objective: The present work entails design and characterization of enteric coated mucoadhesive microcapsules loaded with amoxicillin trihydrate as a novel chronotherapeutic approaches for the treatment and management of bacterial infection.Methods: The microcapsules were prepared by solvent evaporation technique using ethyl cellulose (EC) and hydroxypropyl methylcellulose (HPMC) as rate-controlling and mucoadhesive polymers, followed by a triple coating with Eudragit L100 as enteric coating polymer. Box-Behnken statistical design (BBD) was applied for optimization of formulations containing EC, HPMCK100M and Eudragit L100 as factors for selected responses like entrapment efficiency, mucoadhesive property and drug release in 24 h. The optimized microcapsules were also characterized for particle size, drug content, swelling index, mucoadhesive strength, and in vivo antiulcer activity.Results: The optimized microcapsules exhibited good entrapment efficiency, particle size and mucoadhesive property. FT-IR studies revealed that there was no drug-polymer interaction. SEM studies revealed that microcapsules were non-aggregated, spherical in shape and smooth appearance. In vitro drug release data from microcapsules was fitted to different kinetic models to explain release profiles. The correlation coefficient (r2) value indicated that drug release followed Higuchi model. Analysis of variance (ANOVA) showed significant difference in the release of drug from all the prepared formulations at P < 0.05 level. Accelerated stability study of optimized formulation (F4) upto 6 month showed there was no change in drug content and release characteristics during storage.


2018 ◽  
Vol 8 (6-s) ◽  
pp. 116-119
Author(s):  
Sarika Saini ◽  
Aman Mittal

Objective- The aim of the present study was to formulate and in- vitro study of glipizide liposphere by using melt dispersion technique. Methods- Glipizide Liposphere system composed of paraffin wax, Stearic acid as lipid phase and sodium lauryl sulphate as surfactant. Glipizide lipospheres were prepared by using melt dispersion technique. Formulation of Glipizide was evaluated such as organoleptic properties, particle size, drug content, entrapment efficiency in-vitro study and stability of the lipospheres. Result- The formation of glipizide lipospheres by using melt dispersion technique was done successfully. All the formulations have off- white in colour, characteristic odour and spherical shape. The formulation A4 has particle size 19.65 μm, drug content 84.93 %, entrapment efficiency 80.75 % and the percentage drug release was carried out by using USP type 2 dissolution apparatus in 6.8 pH phosphate buffer solution and drug release of glipizide lipospheres within 12 hrs was found to be 74.06 %.stability study of glipizide lipospheres revealed that the formulation was stable at 5oC ± 3oC. Keywords- Lipospheres, Glipizide, Paraffin wax, Melt dispersion method, Dissolution Apparatus, Stability study


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (01) ◽  
pp. 25-31
Author(s):  
M Priyanka ◽  
◽  
F. S. Dasankoppa ◽  
H. N Sholapur ◽  
NGN Swamy ◽  
...  

The poor bioavailability and the therapeutic effectiveness exhibited by the anti-depressant venlafaxine hydrochloride on oral administration is overcome by the use of ion-activated gel forming systems that are instilled as drops; these undergo gelation in the nasal cavity. The present study describes the design, characterization and evaluation of mucoadhesive nasal in situ gelling drug delivery of venlafaxine hydrochloride using different polymers like sodium alginate, HPMC and pectin in various concentrations. DSC studies revealed compatibility of the drug and excipients used. The in situ gels were characterized for physicochemical parameters, gelling ability, rheological studies, drug content, drug entrapment efficiency, in vitro mucoadhesive strength, water holding capacity, gel expansion coefficient and in vitro drug release studies. The amount of polymer blends was optimized using 23 full factorial design. The influence of experimental factors on percentage cumulative drug release at the end of 2 and 8 hours were investigated to get optimized formulation. The responses were analyzed using ANOVA and polynomial equation was generated for each response using multiple linear regression analysis. Optimized formulation, F9, containing 1.98% w/V sodium alginate, 0.64% w/V hydroxylpropyl methylcellulose, 0.99% w/V pectin showed percentage cumulative drug release of 19.33 and 80.44 at the end of 2 and 8 hours, respectively, which were close to the predicted values. The optimized formulation was subjected to stability study for three months at 300C /75% RH. The stability study revealed no significant change in pH, drug content and viscosity. Thus, venlafaxine hydrochloride nasal mucoadhesive in situ gel could be successfully formulated to improve bioavailability and to target the brain.


2018 ◽  
Vol 10 (4) ◽  
pp. 82
Author(s):  
Koyel Kar ◽  
R. N. Pal ◽  
Gouranga Nandi

Objective: The objective of the present work was to conduct accelerated stability study as per international council for harmonisation (ICH) guidelines and to establish shelf life of controlled release dosage form of ropinirole hydrochloride and pramipexole dihydrochloride microspheres for a period of 6 mo.Methods: Most optimized batch of ropinirole hydrochloride and pramipexole dihydrochloride (F12 and M12 respectively) were selected and subjected to exhaustive stability testing by keeping the sample in stability oven for a period of 3 and 6 mo. Various parameters like surface morphology, particle size, drug content, in vitro drug release and shelf life were evaluated at 3 and 6 mo period. The surface morphology of the formulated microspheres was determined by scanning electron microscopy (SEM). The particle size of the microspheres was estimated by optical microscopy method. The drug content was assayed by the help of ultra-violet spectrophotometer (UV). The in vitro drug release was performed by using Paddle II type dissolution apparatus and the filtrate was analyzed by UV spectrophotometer. The shelf life of the optimized microspheres was calculated by using the rate constant value of the zero-order reaction.Results: A minor change was recorded in average particle size of F12 and M12 microspheres after storage for 6 mo. For F12 and M12, initially the particle size was 130.00 µm and 128.92 µm respectively and after 6 mo it was found to be 130.92 µm and 128.99 µm respectively. There was no change in surface morphology of F12 and M12 microspheres after 6 mo of storage. The shape of microspheres remained spherical and smooth after 6 mo. An insignificant difference of drug content was recorded after 6 mo compared to the freshly prepared formulation. For F12 and M12, 94.50% and 93.77% of the drug was present initially and after 6 mo 94.45% and 93.72% of the drug was recorded. In vitro drug release was recorded after 6 mo for F12 and M12. Initially, 97.99% and 97.69% of the drug was released till 14th hour respectively for F12 and M12. After 6 mo, 98.23% and 97.99% of the drug was released respectively. The percentage residual drug content revealed that the degradation of microspheres was low. Considering the initial percentage residual drug content as 100%, 99.94% of the drug was recorded for both F12 and M12. The shelf life for F12 and M12 was found to be 10 y 52 d and 10 y 70 d respectively which were determined by the zero-order kinetic equation.Conclusion: A more or less similar surface morphology, particle size, drug content and percent of drug release before and after stability study confirmed the stability of F12 and M12 microspheres after storage for 6 mo and prove the efficacy of the microspheres in the site-specific delivery of drugs in Parkinson’s disease.


Author(s):  
Somasundaram I

Aims and Objectives: The present study is to formulate the nanosuspension containing a hydrophilic drug pramipexole dihydrochloride and hesperidin and to increase the drug entrapment efficiency.Methods: Hesperidin and pramipexole dihydrochloride loaded in chitosan nanosuspension is prepared by ionic gelation method using chitosan and tripolyphosphate. There was no incompatibility observed between the drug and polymer through Fourier transform infrared and differential scanning calorimetric. Various other parameters such as particle size, zeta potential, scanning electron microscope, drug content, drug entrapment efficiency, and in vitro release have been utilized for the characterization of nanoparticles.Results and Discussion: The average size of particle is 188 nm; zeta potential is 46.7 mV; drug content of 0.364±0.25 mg/ml; entrapment efficiency of 72.8% is obtained with HPN3 formulation. The PHC1 shows the highest drug release followed by PHC2 due to low concentration of polymer and PHC4 and PHC5 show less drug release due to high concentration of polymer. The in vitro release of PHC3 is 85.2%, initial the burst release is shown which is approximately 60% in 8 h; then, slow release later on drastic reduction in release rate is shown in 24 h. The in vivo study histopathological report confers the effective protective against rotenone induces Parkinson’s.Conclusion: PHC3 was chosen as the best formulation due to its reduced particle size and controlled release at optimum polymer concentration which may be used to treat Parkinson’s disease effectively..


Author(s):  
MEGHANA RAYKAR ◽  
MALARKODI VELRAJ

Objective: This study aims to Formulate Mouth Dissolving Tablets (MDTs) of Tofacitinib Citrate with the increase in bioavailability and patient compliance. Methods: Mouth Dissolving Tablets (MDTs) of Tofacitinib Citrate were developed by full factorial design at 32levelsand prepared by direct compression method using super integrants like sodium starch glycolate, Ludiflash. The tablets were compressed into compacts on a 10 station tablet machine. The bulk drug was characterised by determining, MP, Solubility, pH and FTIR spectra. Results: The weight variation, hardness and diameter, thickness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies, and stability study, tablet thickness, weight variation and drug content post compression parameters remained consistent and reproducible. All the formulations showed, almost 100 percent of drug release within 75 min. Formulations F1, F2 and F3 were prepared with 5 mg of SSG and 20 mg, 30 mg, and 40 mg Ludiflash which shows % release of drug in the order of F1<F2<F3. Formulations F4, F5 and F6 were prepared with 10 mg of SSG and 20 mg, 30 mg, and 40 mg Ludiflash which shows % release of drug in the order of F4<F5<F6. Formulations F7, F8 and F9 were prepared with 15 mg of SSG and 20 mg, 30 mg, and 40 mg Ludiflash which shows % release of drug in the order of F7<F8<F9. Conclusion: It is concluded that the amount of superdisintegrants decreases disintegration time of tablets, decreases wetting time, increases the cumulative % drug release causes better absorption.


Author(s):  
Anupriya Anand ◽  
Bharadhwaj Ramesh Iyer ◽  
Chandrasekar Ponnusamy ◽  
Rajesh Pandiyan ◽  
Abimanyu Sugumaran

Aim: The present research work discussed the preparation of lomustine loaded with chitosan nanoparticles (LNCp) by ionic gelation method with homogenization using the design on experiments by Box-Behnken design. Methods: The nanoparticles are evaluated by particle size, zeta potential, surface morphology, drug content, entrapment efficiency and in-vitro drug release. Results: The FT-IR results support that drug have no interaction with excipients, which are used in the preparation of nanoparticle. The particle size, drug content and encapsulation efficiency of the developed nanoparticles ranged from 190 to 255 nm, 80.88% to 94.02%, and 77.12 to 88.74%, respectively. The drug release rate is diffusion-controlled over 8 hours. The F-value for all of the responses shows that the models are significant. The p-value, less than 0.05 for all the responses reveals the significance of the models. Graphical optimisation is done by desirability plot and overlay plot, which contains optimal values of independent variables with the desirability of 1. Conclusion: In conclusion, the results suggested that the optimised lomustine loaded chitosan nanoparticles are useful for brain targeting hence hold the potential for further research and clinical application.


Author(s):  
Seema Saini ◽  
Rajeev Garg

The stability study is a critical parameter to be evaluated in a pharmaceutical product development cycle. A pharmaceutical scientist pays a great deal of heed in testing a product stability. The present research work focused on conducting stability study of fast disintegrating tablet batch of Nisoldipine (NFDT). The various parameters evaluated were weight, hardness, friability, disintegration time, drug content and % drug released. The stability study of optimized fast disintegrating tablet batch NFDT was performed according to ICH guidelines. For the study plan, fast disintegrating tablet batch was placed in a wide mouth air tight containers, which were charged into the stability chamber. The temperature was adjusted at 40°C ± 2°C and relative humidity of 75% ± 5%. The study period was of 6 months. The fast disintegrating tablet batch NFDT did not showed any significant difference in weight, hardness, % friability and disintegration time. The drug content was also reported to be in limits of acceptance. The % drug released at various time intervals was insignificantly changed during its storage period. Hence, the prepared tablets were stable during their storage period.


Author(s):  
Vedanshu Malviya ◽  
Srikant Pande

The intention of the present study was to formulate the oral dispersible film of Fluoxetine hydrochloride using pullulan as a polymer and to evaluate it with the different parameters. The drug-excipients studies were carried out in order to determine any type of incompatibilities by using Fourier transmission infrared spectroscopy (FT-IR). The oral dispersible films were prepared using solvent casting method using pullulan as a polymer. Glycerin was used as a plasticizer. The prepared films were evaluated for the parameters like physical appearance, thickness, folding endurance, In-vitro disintegration, mechanical properties, surface pH, drug content uniformity, taste evaluation, In-vitro dissolution test and stability study. The X5 formulation was found to be stable and appropriate in its evaluation parameters than compared to other formulations. The folding endurance was found to be 259±2.53, disintegration time was found to be 04±0.69, thickness was found to be 0.081±0.003, tensile strength was found to be 5.55, the % elongation was found to be 27.50, the maximum percentage drug release was found to be 95.80% in 30 minutes. The drug content was found to be 99.86 with surface pH of 6.8. In the stability studies of the formulation the product was found to be stable for 90 days. The oral dispersible film is simple to administer and very much effective for the patients and the prepared film of fluoxetine hydrochloride proves to be potential candidate for safe and effective oral dispersible drug delivery.


2018 ◽  
Vol 10 (4) ◽  
pp. 133 ◽  
Author(s):  
Shweta Gedam ◽  
Pritee Jadhav ◽  
Swati Talele ◽  
Anil Jadhav

Objective: The present investigation was undertaken to develop and evaluate a gastroretentive mucoadhesive microspheres of anti-osteoporosis drug risedronate sodium to enhance the residence time and drug release by studying the effect of the crosslinking agent to obtain the best formulation with reduced particle size and good in vitro mucoadhesion strength.Methods: Selected drug risedronate sodium is a potent pyridinyl bisphosphonate used for the treatment of osteoporosis, and other bone disorders. Microspheres using sodium alginate as a polymer and calcium chloride solution as a cross-linker were prepared successfully by the emulsification crosslinking method. The 23 factorial design was used to study the effects of various variables like a drug: polymer ratio, crosslinking agent concentration and crosslinking time on the particle size and in vitro mucoadhesion strength. All these formulations were evaluated for entrapment efficiency, percentage yield and cumulative drug release. F1 batch was selected as best formulation and evaluated for scanning electron microscopy, fourier transforms infrared spectroscopy, differential scanning calorimetry, stability study.Results: Design batches were evaluated for percent yield (61.29-89.33%), % entrapment efficiency (42.25±0.620-62.58±0.330), mucoadhesion strength (68.15±0.37-82.24±0.72%) and drug release at 12 h (67-84%). Among the microspheres formulation, an F1 batch of (0.5:1) drug: polymer concentration and at 4% concentration of calcium chloride as a crosslinker was considered best formulation with reduced particle size 32.85±0.774μm, % intro mucoadhesion. 82.24±0.72. In vitro mucoadhesion strength was increased with the increasing crosslinking time from 5 min to 10 min. The fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) study showed no interaction between drug and polymer. X-ray diffraction (XRD) spectrum of microspheres indicates that drug particles are dispersed at the molecular level in the polymer matrices so no indication of the crystalline nature of the drug nature. Scanning electron microscopic (SEM) study showed that microspheres were spherical in shape with a smooth surface. F1 batch shows percentage cumulative drug release 84.07%. In vitro dissolution studies indicates that percent cumulative drug release from microspheres follows zero order kinetics plot which indicates controlled-release drug-delivery for 12 h which leads to control of plasma concentration.Conclusion: The results show that the formulation that contains (0.5:1) drug: polymer ratio, calcium chloride in 4% concentration and crosslinking time 10 min is the best one and can be utilized to formulate risedronate sodium mucoadhesive microspheres to enhance gastric residence time, improved patient compliance and reduction in the frequency of drug administration.


Sign in / Sign up

Export Citation Format

Share Document