scholarly journals Preparation and Evaluation of Nanophytosomes of Aqueous Extract of Leaves of Momordica charantia

Author(s):  
P. Ramakrishna Reddy ◽  
V. Sreedhar ◽  
K. Rajesh Reddy ◽  
D. Murali ◽  
K. Sudhakara

Though there was not enough data available throughout the phytosome research, authors tried maximum to provide all inputs for the preparation of phytosomes. The objectives of the present research work focused on the investigation of phyto chemical constituents of aqueous extract, preparation of nanophytosomes of aqueous extract. Momorica charantia plants were collected locally from the village of Muhavur. The leaves were separated from the plant and the leaves were washed with water and then again washed with chloroform to remove soil particles and the leaves were spread and dried in the shade for 4 days. The aqueous extract of Momorica charantia obtained was subjected to qualitative analysis to test the presence of various phytochemicals. Particle size of prepared nanophytosomes was analyzed by photon correlation spectroscopy using a Shimadzu particle size analyzer (SALD 2101, Japan). Diluted nanophytosomal suspension was placed into the sample dispersion unit while stirring at room temperature (in order to reduce the inter particle aggregation). All analyses has been performed in triplicate. Nanophytosomes of Momordica charantia aqueous extract was effectively prepared and tested. The aqueous extract was evaluated phyto chemical screening followed by all characterization studies. Phytochemical screening study remaining that the extract consists of flavanoids. The characterization study showed that the phytosomes are having nano size, good stability properties with round to spherical shape with smooth surfaces.

2013 ◽  
Vol 829 ◽  
pp. 284-288
Author(s):  
Elham Rostami ◽  
Soheila Kashanian ◽  
Mehran Askari

A nanoparticle polymer has been developed as a potential platform for drug delivery. Chitosan nanoparticles were prepared with tripolyphosphate (TPP) by the ionic crosslinking method. The particle size of chitosan nanoparticles was in the range of 190-250 nm and encapsulation efficiencies of levothyroxine were 85%. The particle size was determined by photon correlation spectroscopy (PCS). Shape and surface morphology were determined by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). They revealed fairly spherical shape of nanoparticles. A non-invasive way to deliver drugs to the deepest parts of the human body is ultrasound. To study how ultrasound causes levothyroxine to be released from chitosan nanoparticles, cumulative release was examined. In this report, we explore the effect of ultrasound and tripolyphosphate (TPP) concentration on release behavior of levothyroxine from chitosan nanoparticles. The drug release from chitosan nanoparticles was enhanced using the ultrasound wave.


2021 ◽  
Author(s):  
Nitish Kumar ◽  
Ghanshyam Das Gupta ◽  
Daisy Arora

Abstract Nose to brain delivery of resveratrol can be a very useful method to overcome the limitations possessed by conventional delivery approaches namely, hepatic metabolism, low bioavailability and half-life of resveratrol, and presence of blood-brain barrier (BBB). The objective of this research work was to develop and optimize the resveratrol-loaded NLCs and coating these carriers with chitosan to increase the residence time of the formulation into the nasal cavity and enhanced permeation across the nasal mucosa. Three CQAs (Particle size, Entrapment efficiency, and PDI), and CMAs (Solid: total lipid concentration, surfactant concentration, and bioactive amount) were selected and the formulation was optimized using the Box-Behnken design (BBD) approach. The optimized batch was evaluated for physicochemical characteristics such as particle size (168.24 ± 8.24 nm), PDI (0.151 ± 0.003), and entrapment efficiency (77.42 ± 3.76 %). This optimized batch was coated with chitosan, which produced coated NLCs with a particle size of 317.7 ± 15.9 nm, and PDI was 0.089 ± 0.009. The morphological study using TEM confirmed the spherical shape, size, and surface coating of the NLCs. Furthermore, both the uncoated and coated particles were analyzed for in vitro resveratrol release, ex vivo diffusion study, and antioxidant assay. NLCs was founded to show sustained in vitro release characteristic, and enhanced bioactive diffusion across the nasal mucosa compared to the bioactive solution of resveratrol. The antioxidant assay revealed that the antioxidant property of resveratrol was intact in the formulation, and a slight increase in antioxidant activity of the formulation was also observed which may be due to the presence of sesame oil in the formulation. These results indicated that the chitosan-coated NLCs can be used to deliver therapeutic moieties more efficiently via the nose to brain drug delivery.


Author(s):  
Madhusudan Rao Y ◽  
Shailaja M ◽  
Ramakrishna S ◽  
Ramesh G ◽  
K H Reddy ◽  
...  

The main objective of the present research work was to design, optimize and characterize olanzapine loaded nano-emulsion for improved brain transport of the drug.   Olanzapine nano-emulsion was formulated using the ultrasonication method. The formulation variables (oil and surfactant) and process variables (ultrasonication time) were optimized by Response surface methodology using the Box-Behnken statistical method. Particle size, polydispersity index (PDI) and zeta potential were measured by photon correlation spectroscopy using a Malvern zeta sizer. Morphology of emulsion droplets was examined by transmission electron microscopy (TEM). Release study was performed and drug release was estimated by HPLC method. Stability studies were performed at 4oC-25oC for a period of three months. The optimized nano-emulsion obtained showed a uniform size distribution with an average size in the range of 65.1 nm to 74.21 nm and surface charge in the range of –18.9 mv to – 25.23 mv. The Transmission electron microscopy studies on olanzapine nano-emulsion revealed a spherical morphology of globules. An average of 91.91% of drug was released from the optimized formulation over a period of 24 hours. The particle size analysis after three months showed no significant change implying that the nano-emulsion was quite stable when stored at room temperature. Stable olanzapine nano-emulsion was formulated. The novel nanoformulation was found to be a potential vehicle for delivery of olanzapine to the brain.


Author(s):  
Nisha Patel ◽  
Hitesh A Patel

In this study, we sought to improve the dissolution characteristics of a poorly water-soluble BCS class IV drug canaglifozin, by preparing nanosuspension using media milling method. A Plackett–Burman screening design was employed to screen the significant formulation and process variables. A total of 12 experiment were generated by design expert trial version 12 for screening 5 independent variables namely the amount of stabilizer in mg (X1), stirring time in hr (X2), amt of Zirconium oxide beads in gm (X3), amount of drug in mg (X4) and stirring speed in rpm (X5) while mean particle size in nm (Y1) and drug release in 10 min. were selected as the response variables. All the regression models yielded a good fit with high determination coefficient and F value. The Pareto chart depicted that all the independent variables except the amount of canaglifozin had a significant effect (p<0.001) on the response variables. The mathematical model for mean particle size generated from the regression analysis was given by mean particle size = +636.48889 -1.28267 amt of stabilizer(X1) -4.20417 stirring time (X2) -7.58333 amt of ZrO2 beads(X3) -0.105556 amt of drug(X4) -0.245167 stirring speed(X5) (R2=0.9484, F ratio=22.07, p<0.001). Prepared canaglifozin nanosuspension exemplified a significant improvement (p<0.05) in the release as compared to pure canaglifozin and marketed tablet with the optimum formulation releasing almost 80% drug within first 10min. Optimized nanosuspension showed spherical shape with surface oriented stabilizer molecules and a mean particle diameter of 120.5 nm. There was no change in crystalline nature after formulation and it was found to be chemically stable with high drug content.


2020 ◽  
Vol 10 (3) ◽  
pp. 312-321
Author(s):  
Idin Sahidin ◽  
Carla W. Sabandar ◽  
Wahyuni ◽  
Rini Hamsidi ◽  
Sandra Aulia Mardikasari ◽  
...  

Background: Marine sponges provided a great source of natural products with promising biological activity. This study was aimed to investigate the chemical constituents of methanol extracts of selected Indonesian marine sponges (Callyspongia sp., Clathria sp., Melophlus sarasinorum, and Xestospongia sp.), collected from the Saponda Islands, Southeast Sulawesi, Indonesia as well as to evaluate their antimicrobial and antioxidant activities. Methods: LCMS/MS analysis used to identify the compounds. Agar well diffusion and DPPH assays were used to evaluate the antimicrobial and antioxidant activities. Results: Chemical screening reported alkaloids, terpenoids, steroids, and saponins from all investigated sponges. The LC-MS/MS analysis identified various compounds which mainly contained steroids. Antimicrobial activity (against Bacillus subtilis, Escherichia coli, Salmonella enterica, and Candida albicans) was only shown by the Xestospongia sp. extract. Meanwhile, extracts of M. sarasinorum, Xestospongia sp., and Callyspongia sp. exhibited potent radical scavenging activity. Conclusion: The study concluded that the selected sponges could provide various groups of compounds. Methanol extracts of these sponges could be used as sources of antimicrobial and antioxidant agents.


Author(s):  
Anjali Pandya ◽  
Rajani Athawale ◽  
Durga Puro ◽  
Geeta Bhagwat

Background: The research work involves development of PLGA biodegradable microspheres loaded with dexamethasome for intraocular delivery. Objective: To design and evaluate long acting PLGA microspheres for ocular delivery of dexamethasone. Method: Present formulation involves the development of long acting dexamethasone loaded microspheres composed of a biodegradable controlled release polymer, Poly(D, L- lactide-co-glycolide) (PLGA), for the treatment of posterior segment eye disorders intravitreally. PLGA with monomer ratio of 50:50 of lactic acid to glycolic acid was used to achieve a drug release up to 45 days. Quality by Design approach was utilized for designing the experiments. Single emulsion solvent evaporation technique along with high pressure homogenization was used to facilitate formation of microspheres. Results: Particle size evaluation, drug content and drug entrapment efficiency were determined for the microspheres. Particle size and morphology was observed using Field Emission Gun-Scanning Electron Microscopy (FEG-SEM) and microspheres were in the size range of 1-5 μm. Assessment of drug release was done using in vitro studies and transretinal permeation was observed by ex vivo studies using goat retinal tissues. Conclusion: Considering the dire need for prolonged therapeutic effect in diseases of the posterior eye, an intravitreal long acting formulation was designed. Use of biodegradable polymer with biocompatible degradation products was a rational approach to achieve this aim. Outcome from present research shows that developed microspheres would provide a long acting drug profile and reduce the frequency of administration thereby improving patient compliance.


2011 ◽  
Vol 83 (11) ◽  
pp. 2027-2040 ◽  
Author(s):  
Neralakere Ramanna Ravikumara ◽  
Basavaraj Madhusudhan

In this study, tamoxifen citrate-loaded chitosan nanoparticles (tamoxcL-ChtNPs) and tamoxifen citrate-free chitosan nanoparticles (tamoxcF-ChtNPs) were prepared by an ionic gelation (IG) method. The physicochemical properties of the nanoparticles were analyzed for particle size, zeta (ζ) potential, and other characteristics using photon correlation spectroscopy (PCS), zeta phase analysis light scattering (PALS), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and differential scanning calorimetry (DSC). The variation in particle size was assessed by changing the concentration of chitosan, pentasodium tripolyphosphate (TPP), and the pH of the solution. The optimized tamoxcL-ChtNPs showed mean diameter of 187 nm, polydispersity of 0.125, and ζ-potential of +19.1 mV. The encapsulation efficiency (EE) of tamoxifen citrate (tamoxc) increased at higher concentrations, and release of tamoxc from the chitosan matrix displayed controlled biphasic behavior. Those tamoxcL-ChtNPs tested for chemosensitivity showed dose- and time-dependent antiproliferative activity of tamoxc. Further, tamoxcL-ChtNPs were found to be hemocompatible with human red blood cells (RBCs) and safe by in vitro cytotoxicity tests, suggesting that they offer promise as drug delivery systems in therapy.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Anju Verma ◽  
Rajni Srivastava ◽  
Pankaj Kumar Sonar ◽  
Ramprakash Yadav

Abstract Background Rosa alba L. belongs to the family Rosaceae. This species is widely cultivated in Europe, Asia, North America, and Northwest Africa due to its fragrance, ornamental, and medicinal values. It is commonly known as white oil-bearing rose, white rose, white rose of York, backyard rose, and sufaid gulab. Main text Rosa alba L. has many biological properties like antioxidant, antimicrobial, antifungal, antifertility, teratogenic, memory enhancing, cytotoxic, and genotoxic activities. The essential oil of Rosa alba L. possesses good antimicrobial activity and consists of many chemical constituents like- citronellol, geraniol, nerol, linalool, citral, carvacrol, eugenol, etc. Conclusion This article briefly reviews the cultivation, traditional uses, phytochemistry, and biological activities of Rosa alba L. Many research papers have been published on the proposed plant and still, there is a very vast scope of research on it. Therefore, this review will be very fruitful for those scientists who are doing or plan to do research work on this plant. All the scientific findings written in this review are explored from Google web, Google Scholar, PubMed, ScienceDirect, Medicinal and Aromatic Plants Abstracts (MAPA), and SciFinder. To date, it is the first systematic review article of such kind, on this plant.


Sign in / Sign up

Export Citation Format

Share Document