scholarly journals Sustainable Production of Bioethanol by Zymomonas mobilis and Saccharomyces cerevisiae using Rice Husk and Groundnut Shell as Substrates

Author(s):  
A. J. Na’Allah ◽  
M. Y. Iliyasu ◽  
U. S. Haruna ◽  
A. Ahmad ◽  
S. O. Oguche ◽  
...  

Background of Study: Plant waste such as rice husk and groundnut shell are generated in large amounts, these waste presents a tremendous pollution to the environment. Worldwide, these wastes are often simply dumped into landfills and oceans or used as animal feeds. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy in order to minimize environmental damages and to meet energy demands of the growing population. Aim: To produce bioethanol from rice husk and groundnut shell using local strains of Zymomonas mobilis and Saccharomyces cerevisiae. Place and Duration of Study: Conducted at the Microbiology Laboratory of Abubakar Tafawa Balewa University Bauchi, Bauchi state, Nigeria, between April to June, 2021. Methods: Groundnut shell and Rice husk were collected from local milling center. The wastes were powdered, sieved and used as carbon source. Proximate composition of the subsrate was done and the total carbohydrate was determined by difference. The sum of the percentage moisture, ash, crude lipid, crude protein and crude fibre was subtracted from 100. Zymomonas mobilis and Saccharomyces cerevisiae were isolated from rotten sweet oranges and locally fermented beverage (‘kunun-zaki’) respectively by growing them on Malt Yeast Peptone Glucose Agar (MYPGA) after which they were further screened for their ability to tolerate ethanol and they serve as organisms for fermentation. The enzyme α- amylase was used for hydrolysis. The fermented substrates were distilled at 78oC and the distillate was collected as bioethanol in a conical flask. UV-VIS spectrophotometer was used to determine the absorbance of each concentration (0, 0.2, 0.4, 0.6 and 0.8cm3) of reducing sugar content of the hydrolysates and the bioethanol produced by developing a standard curve at a wavelength of 491nm and 588nm respectively. The concentration of reducing sugar and bioethanol was determined using a reference line from the Standard curve. Results: Proximate analysis done shows that rice husk have 70.09% carbohydrates while groundnut shell has 65.09% carbohydrates. Groundnut shell yielded the highest reducing sugar of 5.096%. Rice husk yielded the lowest quantity of reducing sugar with a total yield of 2.962%. Maximum concentration of bioethanol of 0.971% was produced from the combination of Saccharomyces cerevisiae and Zymomonas mobilis from groundnut shell. The lowest concentration of 0.121% of bioethanol was produced when Saccharomyces cerevisiae was used on rice husk hydrolysates. The synergistic relationship of Saccharomyces cerevisiae and Zymomonas mobilis yielded the maximum bioethanol when compared with the yield obtained when the organisms were used singly. Zymomonas mobilis produced highest bioethanol content when the organisms are used single. Conclusion: This study demonstrates the potentiality of local strains of Saccharomyces cerevisiae and Zymomonas mobilis isolated from rotten sweet orange and locally fermented beverage (‘kunun-zaki’) to produce bioethanol by fermenting the rice husk and groundnut shell hydrolysates.

Author(s):  
Kehinde Tope Adegbehingbe ◽  
Foluso Faparusi ◽  
Bartholomew Saanu Adeleke

Aim: This study was designed to determine the bioethanol production from fermented cassava peel using Saccharomyces cerevisiae and Zymomonas mobilis. Methodology: Cassava peels were collected from cassava processing sites, washed, surface sterilized, dried, milled into flour, pretreated, and fermented. Saccharomyces cerevisiae and Z. mobilis suspensions were aseptically inoculated into the fermenting medium and allowed to stand for seven days. The pH, total reducing sugar, chemical composition, and bioethanol composition of the fermenting substrates were determined. Results: A pH decrease from 5.2 to 4.1 was recorded in the sample fermented with S. cerevisiae while the least pH value of 3.8 was obtained from the sample fermented with Z. mobilis, respectively. The total reducing sugar (glucose) of fermented samples decreased from 3.4% to 1.5% (Z. mobilis) and 3.4% to 1.88% (S. cerevisiae) compared with the control sample. The chemical composition showed high protein and fat contents in the fermented samples. High percentage yield of 30% with ethanol volume of 45 mL was recovered from cassava peel inoculated with S. cerevisiae while flash point, i.e. the lowest temperature at which fuel produces enough vapor to cause ignition leading to flame generation of 24oC, was recorded for both fermented samples inoculated with S. cerevisiae and Z. mobilis. Conclusion: The ability of the bacterium and the yeast isolates exhibiting high potential for bioethanol production could be promising in various industrial processes as an alternative to fossil transportation fuel.


2021 ◽  
Vol 37 (2) ◽  
pp. 144-151
Author(s):  
M.R Adedayo ◽  
A.E Ajiboye ◽  
O.A Yahaya

Lignocellulose wastes are the most abundant residues on the surface of the earth. This project studies the possibility of ethanol production from a forestry waste. Wood wastes from Gmelina arborea were treated with dillute sulfuric acid to break down the lignin component. Fermentation for ethanol production was done using baker’s yeast (Saccharomyces cerevisiae ATCC 204508/S288c) for 120 hours using submerged fermentation, and the pH, reducing sugar, specific gravity and lignin content were determined using standard techniques. Ethanol concentration and yield were measured via vinometer and ethanol standard curve techniques. From the results, the highest pH was obtained at 72 hours of the fermentation period. The reducing sugar content and specific gravity decreased over the fermentation time . The acid-pretreated wood wastes gave a maximum ethanol concentration of 3.84 % and a yield of 7.60 ml/g as measured from the vinometer and ethanol standard curve methods at 72 and 96 hours of fermentation, respectively. About 13.6% v/v of ethanol was recovered from the distillation process employed to separate the components of the product generated after fermentation. The observations in this research reveal the possibility of producing ethanol from G. arborea wood wastes and under optimized culture conditions. This could serve as an alternate means of biofuel generation and hence value addition to the wastes. Keywords: Gmelina arborea, Saccharomyces cerevisiae, Ethanol, Submerged fermentation


2015 ◽  
Vol 9 (7) ◽  
pp. 8 ◽  
Author(s):  
Tri Widjaja ◽  
Ali Altway ◽  
Arief Widjaja ◽  
Umi Rofiqah ◽  
Rr Whiny Hardiyati Erlian

One form of economic development efforts for waste utilization in rural communities is to utilize stem sorghum to produce food grade ethanol. Sorghum stem juice with 150 g/L of sugar concentration was fermented using conventional batch process and cell immobilization continuous process with K-carrageenan as a supporting matrix. The microorganism used was Mutated Zymomonas Mobilis to be compared with a mixture of Saccharomyces Cerevisiae and Pichia Stipitis, and a mixture of Mutated Zymomonas Mobilis and Pichia Stipitis. Ethanol in the broth, result of fermentation process, was separated in packed distillation column. Distilate of the column, still contain water and other impurities, was flown into molecular sieve for dehydration and activated carbon adsorption column to remove the other impurities to meet food grade ethanol specification. The packing used in distillation process was steel wool. For batch fermentation, the fermentation using a combination of Saccharomyces Cerevisiae and Pichia Stipitis produced the best ethanol with 12.07% of concentration, where the yield and the productivity were 63.49%, and 1.06 g/L.h, respectively. And for continuous fermentation, the best ethanol with 9.02% of concentration, where the yield and the productivity were 47.42% and 174.27 g/L.h, respectively, is obtained from fermentation using a combination of Saccharomyces Cerevisiae and Pichia Stipitis also. Fermentation using combination microorganism of Saccharomyces Cerevisiae and Pichia Stipitis produced higher concentration of ethanol, yield, and productivity than other microorganisms. Distillation, molecular sieve dehydration and adsorption process is quite successful in generating sufficient levels of ethanol with relatively low amount of impurities.


Author(s):  
Gwandu AZ ◽  
Farouq AA ◽  
Baki AS ◽  
Peni DN

This study was based on the production of bioethanol as an alternative source of fuel using rice and millet husks. Proximate, elemental and thermogravimetric analysis (TGA) were conducted of the biomass. The proximate analysis revealed that millet husk had the highest moisture content of 26.67±0.58% when compared with rice husk 8.17±0.29%. The TGA of rice husk had a high endset temperature of 355.510C and a weight loss of -48.23%, millet husk had low endset temperature of 349.210C and a weight loss of -44.25%. When thirty grams (30g) of the substrates was used, rice husk revealed the highest reducing sugar content of 2.59±1.24mol/dm3 when compared to millet husk that had 1.63±0.68 mol/dm3. Rice husk indicated low yield after 7 days of fermentation period but showed a significantly high yield in the volume of ethanol produced 68.67±17.69g/l and millet husk had a yield of 79.80±0.93g/l. This indicated that both rice and millet husks were potent for bioethanol production with millet husk having the highest yield.


Author(s):  
Ana Flores Garcia ◽  
Ruben Márquez-Meléndez ◽  
erika salas ◽  
Guillermo Ayala Soto ◽  
Ivan Salmeron Ochoa ◽  
...  

Chagalapoli fruit (Ardisia compressa) is similar to Vaccinium myrtillus (berries) with high-polyphenol content. The objective of this study was to evaluate the physicochemical properties of Chagalapoli fruit and to determine the conditions for the preparation of a fermented beverage using Saccharomyces cerevisiae yeast, evaluating the impact on sensory properties. The fermentation process lasted 4 days at 27 °C, with absence of light and a fixed pH of 3.8. The phenolic contents obtained in samples according to chromatograms were 1.27 mg(EPI)/mL in filtered juice, 1.59 mg(EPI)/mL in filtered fermented beverage, 1.91 mg(EPI)/mL in partially filtered juice and 3.19 mg(EPI)/mL in partially filtered fermented beverage. An affective test was carried out to determine the sensory acceptability of the final product, evaluating the flavor, color and aroma parameters. The fermented beverage with the greatest preference on color and flavor attributes was the partially filtered fermented beverage.


2011 ◽  
Vol 347-353 ◽  
pp. 2541-2544
Author(s):  
Benjarat Laobussararak ◽  
Warawut Chulalaksananukul ◽  
Orathai Chavalparit

This study was to investigate the fermentation of rice straw using various microorganisms, i.e., the bacterium Zymomonas mobilis, a distillery yeast Saccharomyces cerevisiae and a co-culture of Zymomonas mobilis and Saccharomyces cerevisiae. Rice straw was pretreated with alkaline and followed by enzymatic hydrolysis using cellulase before fermentation by the bacterium and a distillery yeast. Results show that alkali pretreatment is appropriate for rice straw since this pretreatment condition can produce the maximum cellulose of 88.96% and reducing sugar content of 9.18 g/l. Furthermore, the ethanol yield after enzymatic hydrolysis (expressed as % theoretical yield) was 15.94-19.73% for the bacterium, 20.48-35.70% for yeast and 21.56-29.89% for co-culture. Therefore, the distillery yeast was a suitable microorganism for ethanol production from rice straw.


2014 ◽  
Vol 875-877 ◽  
pp. 242-245
Author(s):  
Jutarut Pornpunyapat ◽  
Wilaiwan Chotigeat ◽  
Pakamas Chetpattananondh

Bioethanol is widely used as renewable resource due to its safe to produce and environmentally friendly. However, knowledge on ethanol production from pineapple peel juice (Pattawia spp) is far from sufficient. In this work, pineapple peel juice (initial pH at 5) was fermented at various yeast contents (1, 3 and 5% by wt.) and fermentation times (3, 5 and 7 days) in order to investigate ethanol production characteristics. Yeast, Sacchromyces cerevisiae was grown on pineapple peel juice. The squeezed juice contained 11% of total sugar and 5% of reducing sugar. The results indicated that the optimum ethanol production was yeast contents of 5% by wt. and fermentation times of 5 days which gave the ethanol production of 9.08g/l. The ethanol at a higher yeast content also had a higher ethanol concentration.


Sign in / Sign up

Export Citation Format

Share Document