scholarly journals WAVE-FLUME EXPERIMENTS OF DISSIPATING WAVES ON SOFT MUD

2011 ◽  
Vol 1 (32) ◽  
pp. 4
Author(s):  
Mohsen Soltanpour ◽  
Farzin Samsami ◽  
Soroush Sorourian

A series of laboratory wave-flume experiments was conducted to investigate the dissipation of monochromatic regular waves on a horizontal muddy bed of commercial kaolinite. The rheological parameters of kaolinite samples with different water content ratios were obtained from controlled shear rate tests using the rheometer. The flow curves of shear stress versus shear rate were found to be essentially Bingham viscoplastic medium for steady unidirectional mud flows of the rheological tests. Assuming Bingham behavior for kaolinite, a wave-mud interaction model was employed to obtain the values of the wave attenuation coefficients. Comparisons between the measured and simulated results show a good agreement.

Nafta-Gaz ◽  
2021 ◽  
Vol 77 (2) ◽  
pp. 127-135
Author(s):  
Rafał Kozdrach ◽  

The article presents the results of research on the influence the type of base oil in lubricating compositions has on the rheological parameters of selected lubricants. Vegetable, mineral, and synthetic dispersion phases were used to produce lubricating greases. The modified amorphous silica was used as the dispersed phase. However, as a modifying additive was used a substance containing the antioxidants, corrosion inhibitors, and EP/AW additives. The experiments on rheological properties were carried out using a Physica MCR 101 rotational rheometer (manufactured by Anton Paar), equipped with a diffusion air bearing and connected to a pneumatic supply – an oil-free Jun-Air compressor and air drying block. The device is equipped with a Peltier system for temperature control in the range of –20°C to 200°C and an external thermostatic VISCOTHERM V2 system, working in the temperature range of –20°C to 200°C. The rheometer control and measurement data analysis were performed using Rheoplus software. The tests were carried out using a cone-plate measuring system with a shear rate range of 0.01–100 s-1 at 20°C for lubricating compositions prepared on various oil bases. To evaluate the value of rheological parameters, the results of tests of the dependence between shear stress and shear rate (flow curves) were used. For the theoretical determined on the flow curves, the following rheological models were used: Bingham, Herschel–Bulkley, Casson, and Tscheuschner. The values of the shear stress (yield point) in depending on the type of dispersion phase has changed. This proves that the use of a base oil with the appropriate functional properties does not weaken, but reinforces the spatial structure of a lubricating grease. It has an important meaning when selecting construction parameters when designing a central lubrication system with grease made from a vegetable oil base (Abyssinian oil). The rheological properties of the lubricating grease are influenced by the type of base oil and thickener, any additives in the grease, the production technology of the grease, and the conditions in which it is used. The tests revealed an important influence of the base oil on the rheological parameters that describe the behaviour of lubricating compositions subjected to stresses and strains in a lubricating system.


2012 ◽  
Vol 12 (12) ◽  
pp. 3811-3820 ◽  
Author(s):  
T.-W. Hsu ◽  
S.-J. Liang ◽  
B.-D. Young ◽  
S.-H. Ou

Abstract. For coastal risk mapping, it is extremely important to accurately predict wave run-ups since they influence overtopping calculations; however, nonlinear run-ups of regular waves on sloping structures are still not accurately modeled. We report the development of a high-order numerical model for regular waves based on the second-order nonlinear Boussinesq equations (BEs) derived by Wei et al. (1995). We calculated 160 cases of wave run-ups of nonlinear regular waves over various slope structures. Laboratory experiments were conducted in a wave flume for regular waves propagating over three plane slopes: tan α =1/5, 1/4, and 1/3. The numerical results, laboratory observations, as well as previous datasets were in good agreement. We have also proposed an empirical formula of the relative run-up in terms of two parameters: the Iribarren number ξ and sloping structures tan α. The prediction capability of the proposed formula was tested using previous data covering the range ξ ≤ 3 and 1/5 ≤ tan α ≤ 1/2 and found to be acceptable. Our study serves as a stepping stone to investigate run-up predictions for irregular waves and more complex geometries of coastal structures.


Author(s):  
Karina I. Hidas ◽  
◽  
Anna Visy ◽  
Ildikó Cs. Nyulas-Zeke ◽  
László Friedrich ◽  
...  

In this study, we examined the industrial usability of frozen and thawed liquid egg yolk (LEY) by preparing lemon curd samples. Therefore, LEY frozen at-18°C was used to make lemon curd samples. LEY was stored for 90 days at -18°C and it was thawed with two different methods (in 2 hours, 35°C and in 24 hours, 5°C) on measurement days (day 1, 7, 14, 30, 60 and 90). After thawing of LEY samples, lemon curd samples were made by adding liquid egg white, butter, lemon juice and sugar. Ingredients were mixed by constant whisking over the steam of hot water. After that, butter was also added to the cream and it was cooled to 20°C. Rheological parameters of the lemon curd samples were examined with rotational rheometer. Shear stress data were recorded by increasing, than by decreasing shear rate values in the range of 10-1000 1/s. Herschel-Bulkley model was fitted to the flow curves of decreasing shear rate. Based on our measurements, we found that the thawing method of frozen liquid egg yolk does not affect the rheological properties of lemon curd made of them, but the length of the frozen storage does.


1981 ◽  
Vol 8 (4) ◽  
pp. 449-455 ◽  
Author(s):  
D. B. Muggeridge ◽  
J. J. Murray

A 58.27 × 4.57 × 3.04 m wave flume has been constructed and calibrated. The maximum wave height that can be generated in regular waves is 0.7 m at a water depth of 1.8 m. Random wave spectra have also been modelled in the flume for prototype wind speeds up to 25 m/s. The maximum significant wave height that can be generated at a 1 m water depth is 20 cm.A series of tests performed to verify design curves presented by Gilbert, Thompson, and Brewer show good agreement with the predicted values. The Pierson-Moskowitz spectrum was modelled between wind speeds of 5 and 25 m/s at suitable scale factors ranging from 1:50 to 1:150. All analysis was carried out in real time by means of an on-line computer.


2020 ◽  
pp. 34-42
Author(s):  
Thibault Chastel ◽  
Kevin Botten ◽  
Nathalie Durand ◽  
Nicole Goutal

Seagrass meadows are essential for protection of coastal erosion by damping wave and stabilizing the seabed. Seagrass are considered as a source of water resistance which modifies strongly the wave dynamics. As a part of EDF R & D seagrass restoration project in the Berre lagoon, we quantify the wave attenuation due to artificial vegetation distributed in a flume. Experiments have been conducted at Saint-Venant Hydraulics Laboratory wave flume (Chatou, France). We measure the wave damping with 13 resistive waves gauges along a distance L = 22.5 m for the “low” density and L = 12.15 m for the “high” density of vegetation mimics. A JONSWAP spectrum is used for the generation of irregular waves with significant wave height Hs ranging from 0.10 to 0.23 m and peak period Tp ranging from 1 to 3 s. Artificial vegetation is a model of Posidonia oceanica seagrass species represented by slightly flexible polypropylene shoots with 8 artificial leaves of 0.28 and 0.16 m height. Different hydrodynamics conditions (Hs, Tp, water depth hw) and geometrical parameters (submergence ratio α, shoot density N) have been tested to see their influence on wave attenuation. For a high submergence ratio (typically 0.7), the wave attenuation can reach 67% of the incident wave height whereas for a low submergence ratio (< 0.2) the wave attenuation is negligible. From each experiment, a bulk drag coefficient has been extracted following the energy dissipation model for irregular non-breaking waves developed by Mendez and Losada (2004). This model, based on the assumption that the energy loss over the species meadow is essentially due to the drag force, takes into account both wave and vegetation parameter. Finally, we found an empirical relationship for Cd depending on 2 dimensionless parameters: the Reynolds and Keulegan-Carpenter numbers. These relationships are compared with other similar studies.


Author(s):  
Ge Fang ◽  
Yurong Wang ◽  
Zhike Peng ◽  
Tianxing Wu

Severe rail corrugation occurs at both the curved and tangent tracks of the metro in Shanghai, where resilient rail fasteners are used to reduce ground-borne vibration by isolating the transmission of track vibration to the infrastructure. The wavelength of corrugation is about 25–30 mm. It could be assumed that this short pitch rail corrugation is caused by the pinned–pinned resonance. However, rail fasteners with low stiffness were believed to be able to suppress the pinned–pinned resonance thereby resulting in corrugation. To investigate the formation mechanism of this specific rail corrugation, a multiple wheel–rail interaction model is used to calculate the wheel–rail dynamic forces caused due to the multiple wheel–rail interactions, which are considered to play a major role in the formation of corrugation. Then the influences on wear and corrugation growth are analyzed in terms of both amplitude and phase of the wheel–rail dynamic forces. By combining the properties of multiple wheel–rail interactions with their influences on wear and corrugation, the growth rates of rail corrugation at different wavelengths (frequencies) are studied to obtain the characteristic wavelength (frequency), at which the highest corrugation growth rate appears. The obtained characteristic wavelength is in good agreement with observation in the practice of Shanghai metro. It is found that the wave reflection from the wheels on the rail is responsible for the short pitch rail corrugation in the resilient tracks. Finally, tuned rail dampers are applied in the multiple wheel–rail interaction models to investigate their effects on rail corrugation growth. The simulation results show that use of tuned rail dampers is effective in suppressing the short pitch rail corrugation occurring at resilient tracks.


2021 ◽  
Author(s):  
Chien Ming Wang ◽  
Huu Phu Nguyen ◽  
Jeong Cheol Park ◽  
Mengmeng Han ◽  
Nagi abdussamie ◽  
...  

&lt;p&gt;Floating breakwaters have been used to protect shorelines, marinas, very large floating structures, dockyards, fish farms, harbours and ports from harsh wave environments. A floating breakwater outperforms its bottom-founded counterpart with respect to its environmental friendliness, cost-effectiveness in relatively deep waters or soft seabed conditions, flexibility for expansion and downsizing and its mobility to be towed away. The effectiveness of a floating breakwater design is assessed by its wave attenuation performance that is measured by the wave transmission coefficient (i.e., the ratio of the transmitted wave height to the incident wave height or the ratio of the transmitted wave energy to the incident wave energy). In some current design guidelines for floating breakwaters, the transmission coefficient is estimated based on the assumption that the realistic ocean waves may be represented by regular waves that are characterized by the significant wave period and wave height of the wave spectrum. There is no doubt that the use of regular waves is simple for practicing engineers designing floating breakwaters. However, the validity and accuracy of using regular waves in the evaluation of wave attenuation performance of floating breakwaters have not been thoroughly discussed in the open literature. This study examines the wave transmission coefficients of floating breakwaters by performing hydrodynamic analysis of some large floating breakwaters in ocean waves modelled as regular waves as well as irregular waves described by a wave spectrum such as the Bretschneider spectrum. The formulation of the governing fluid motion and boundary conditions are based on classical linear hydrodynamic theory. The floating breakwater is assumed to take the shape of a long rectangular box modelled by the Mindlin thick plate theory. The finite element &amp;#8211; boundary element method was employed to solve the fluid-structure interaction problem. By considering heave-only floating box-type breakwaters of 200m and 500m in length, it is found that the transmission coefficients obtained by using the regular wave model may be smaller (or larger) than that obtained by using the irregular wave model by up to 55% (or 40%). These significant differences in the transmission coefficient estimated by using regular and irregular waves indicate that simplifying assumption of realistic ocean waves as regular waves leads to significant over/underprediction of wave attenuation performance of floating breakwaters. Thus, when designing floating breakwaters, the ocean waves have to be treated as irregular waves modelled by a wave spectrum that best describes the wave condition at the site. This conclusion is expected to motivate a revision of design guidelines for floating breakwaters for better prediction of wave attenuation performance. Also, it is expected to affect how one carries out experiments on floating breakwaters in a wave basin to measure the wave transmission coefficients.&lt;/p&gt;


Author(s):  
Gang Wang ◽  
Tobias Martin ◽  
Liuyi Huang ◽  
Hans Bihs

Abstract The hydrodynamics and flow around net meshes has recently drawn more and more attention because it is closely related to the expected forces on aquaculture. In terms of modelling the hydrodynamic forces on nets, Morison or screen force models are ordinarily. However, they mainly rely on empirical, experimental or cylindrical hydrodynamic coefficients, neglecting the flow interactions between adjacent net twines. In this study, the open-source hydrodynamic toolbox REEF3D is adopted to analyze the flow around net meshes and investigate the hydrodynamic drag on the structure. The simulation accuracy is in good agreement with flume experiments and previous research. The results demonstrate that 2 × 2 or 3 × 3 mesh cases are more reliable for studying the flow around net meshes including the flow interactions around adjacent twines. It is further shown that controlling the solidity of the net through changing net bar diameters has different effects on the flow around meshes than controlling it by the twine length. This paper presents a first step in the aim to derive a new empirical formula for the drag coefficients depending on the solidity and fluid properties which is more appropriate for to the physics involved in offshore conditions.


2019 ◽  
Vol 33 (05) ◽  
pp. 1950014 ◽  
Author(s):  
A. Bindu Madhavi ◽  
S. Sreehari Sastry

Rheological properties of Cholesteryl n-valerate, Cholesteryl decanoate and Cholesteryl myristate which are esters of cholesterol have been studied. Phase transition temperatures and rheological parameters such as viscosity, elastic modulus G[Formula: see text], loss modulus G[Formula: see text] as functions of temperature, shear rate and time are investigated. In frequency sweep test, a higher transition crossover region has occurred for Cholesteryl myristate, whereas for Cholesteryl n-valerate a frequency-independent plateau prevailed for both the moduli. The occurrence of blue phase in Cholesteryl decanoate during temperature sweep measurements is an indication for the rheological support. The results for steady state have informed that cholesteric esters are having non-Newtonian flow behavior in their respective cholesteric phases. The power-law model has explained well the shear rate dependence of shear stress. A few practical applications of these esters as lubricant additives are discussed, too.


Sign in / Sign up

Export Citation Format

Share Document