scholarly journals REEF3D:NSEWAVE, A THREE-DIMENSIONAL NON-HYDROSTATIC WAVE MODEL ON A FIXED GRID

Author(s):  
Hans Bihs ◽  
Kristina Heveling ◽  
Arun Kamath

For coastal engineering problems, wave modeling is required for various spatial scales. In recent years, the development of high-resolution Computational Fluid Dynamics (CFD) based numerical wave tanks (NWT) has gained a lot of attention. Here, the Navier-Stokes equations are solved together with a two-phase interface capturing algorithm for the calculation of the free surface location. The interface capturing treatment of the free water surface is performed on fixed grids, allowing for the simulation of complex wave phenomena such as breaking waves. The CFD-based NWT are preferably used for nearfield problems, such as wave-structure interaction. For larger spatial scales, the computational cost becomes rather expensive. In the current paper, the three-dimensional open-source hydrodynamics model REEF3D is extended from a CFD-based NWT to a non-hydrostatic wave model, suitable for economic large scale computation of waves.

Author(s):  
Hui Huang ◽  
Jian Chen ◽  
Blair Carlson ◽  
Hui-Ping Wang ◽  
Paul Crooker ◽  
...  

Due to enormous computation cost, current residual stress simulation of multipass girth welds are mostly performed using two-dimensional (2D) axisymmetric models. The 2D model can only provide limited estimation on the residual stresses by assuming its axisymmetric distribution. In this study, a highly efficient thermal-mechanical finite element code for three dimensional (3D) model has been developed based on high performance Graphics Processing Unit (GPU) computers. Our code is further accelerated by considering the unique physics associated with welding processes that are characterized by steep temperature gradient and a moving arc heat source. It is capable of modeling large-scale welding problems that cannot be easily handled by the existing commercial simulation tools. To demonstrate the accuracy and efficiency, our code was compared with a commercial software by simulating a 3D multi-pass girth weld model with over 1 million elements. Our code achieved comparable solution accuracy with respect to the commercial one but with over 100 times saving on computational cost. Moreover, the three-dimensional analysis demonstrated more realistic stress distribution that is not axisymmetric in hoop direction.


2019 ◽  
Vol 875 ◽  
pp. 854-883 ◽  
Author(s):  
Kelli Hendrickson ◽  
Gabriel D. Weymouth ◽  
Xiangming Yu ◽  
Dick K.-P. Yue

We present high-resolution implicit large eddy simulation (iLES) of the turbulent air-entraining flow in the wake of three-dimensional rectangular dry transom sterns with varying speeds and half-beam-to-draft ratios $B/D$. We employ two-phase (air/water), time-dependent simulations utilizing conservative volume-of-fluid (cVOF) and boundary data immersion (BDIM) methods to obtain the flow structure and large-scale air entrainment in the wake. We confirm that the convergent-corner-wave region that forms immediately aft of the stern wake is ballistic, thus predictable only by the speed and (rectangular) geometry of the ship. We show that the flow structure in the air–water mixed region contains a shear layer with a streamwise jet and secondary vortex structures due to the presence of the quasi-steady, three-dimensional breaking waves. We apply a Lagrangian cavity identification technique to quantify the air entrainment in the wake and show that the strongest entrainment is where wave breaking occurs. We identify an inverse dependence of the maximum average void fraction and total volume entrained with $B/D$. We determine that the average surface entrainment rate initially peaks at a location that scales with draft Froude number and that the normalized average air cavity density spectrum has a consistent value providing there is active air entrainment. A small parametric study of the rectangular geometry and stern speed establishes and confirms the scaling of the interface characteristics with draft Froude number and geometry. In Part 2 (Hendrikson & Yue, J. Fluid Mech., vol. 875, 2019, pp. 884–913) we examine the incompressible highly variable density turbulence characteristics and turbulence closure modelling.


2015 ◽  
Vol 767 ◽  
pp. 364-393 ◽  
Author(s):  
P. Lubin ◽  
S. Glockner

AbstractThe scope of this work is to present and discuss the results obtained from simulating three-dimensional plunging breaking waves by solving the Navier–Stokes equations, in air and water. Recent progress in computational capabilities has allowed us to run fine three-dimensional simulations, giving us the opportunity to study for the first time fine vortex filaments generated during the early stage of the wave breaking phenomenon. To date, no experimental observations have been made in laboratories, and these structures have only been visualised in rare documentary footage (e.g. BBC 2009 South Pacific. Available on YouTube, 7BOhDaJH0m4). These fine coherent structures are three-dimensional streamwise vortical tubes, like vortex filaments, connecting the splash-up and the main tube of air, elongated in the main flow direction. The first part of the paper is devoted to the presentation of the model and numerical methods. The air entrainment occurring when waves break is then carefully described. Thanks to the high resolution of the grid, these fine elongated structures are simulated and explained.


Computation ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 50
Author(s):  
Jonatas Borges ◽  
Marcos Lourenço ◽  
Elie Padilla ◽  
Christopher Micallef

The immersed boundary method has attracted considerable interest in the last few years. The method is a computational cheap alternative to represent the boundaries of a geometrically complex body, while using a cartesian mesh, by adding a force term in the momentum equation. The advantage of this is that bodies of any arbitrary shape can be added without grid restructuring, a procedure which is often time-consuming. Furthermore, multiple bodies may be simulated, and relative motion of those bodies may be accomplished at reasonable computational cost. The numerical platform in development has a parallel distributed-memory implementation to solve the Navier-Stokes equations. The Finite Volume Method is used in the spatial discretization where the diffusive terms are approximated by the central difference method. The temporal discretization is accomplished using the Adams-Bashforth method. Both temporal and spatial discretizations are second-order accurate. The Velocity-pressure coupling is done using the fractional-step method of two steps. The present work applies the immersed boundary method to simulate a Newtonian laminar flow through a three-dimensional sudden contraction. Results are compared to published literature. Flow patterns upstream and downstream of the contraction region are analysed at various Reynolds number in the range 44 ≤ R e D ≤ 993 for the large tube and 87 ≤ R e D ≤ 1956 for the small tube, considerating a contraction ratio of β = 1 . 97 . Comparison between numerical and experimental velocity profiles has shown good agreement.


2006 ◽  
Vol 128 (6) ◽  
pp. 1394-1399 ◽  
Author(s):  
Donghyun You ◽  
Meng Wang ◽  
Rajat Mittal ◽  
Parviz Moin

A novel structured grid approach which provides an efficient way of treating a class of complex geometries is proposed. The incompressible Navier-Stokes equations are formulated in a two-dimensional, generalized curvilinear coordinate system complemented by a third quasi-curvilinear coordinate. By keeping all two-dimensional planes defined by constant third coordinate values parallel to one another, the proposed approach significantly reduces the memory requirement in fully three-dimensional geometries, and makes the computation more cost effective. The formulation can be easily adapted to an existing flow solver based on a two-dimensional generalized coordinate system coupled with a Cartesian third direction, with only a small increase in computational cost. The feasibility and efficiency of the present method have been assessed in a simulation of flow over a tapered cylinder.


Author(s):  
Jianhui Xie ◽  
R. S. Amano

In fluid flow and heat transfer, the finite element based fully coupling solution for all conservation equations is cost effective for most of the two dimensional, isothermal problems, but suffers in the storage and solution efficiency for large three dimensional problems. The segregated solution algorithm has been designed to address large scale simulation with avoiding the direct formulation of a global matrix. There is trade-off between performing a large number of less expensive iterations by segregated solvers compared to less number of more expensive fully coupled solvers. In this paper, a Finite Element based scheme based on preconditioned GMRES coupled algorithm and SUPG (Streamline Upwind Petrov-Galerkin) pressure prediction/correction segregated formulations have been discussed to solve the steady Navier-Stokes equations. A systematic comparison and benchmark between the segregated and fully coupled formulation has been presented to evaluate the individual benefits and strengths of the coupling and segregated procedure by studying lid-driven cavity problem and large industry application problem with respect to the system storage and solution convergence.


2014 ◽  
Vol 10 (4) ◽  
pp. 631-658 ◽  
Author(s):  
Mica Grujicic ◽  
Jennifer Snipes ◽  
S. Ramaswami ◽  
Fadi Abu-Farha

Purpose – The purpose of this paper is to propose a computational approach in order to help establish the effect of various self-piercing rivet (SPR) process and material parameters on the quality and the mechanical performance of the resulting SPR joints. Design/methodology/approach – Toward that end, a sequence of three distinct computational analyses is developed. These analyses include: (a) finite-element modeling and simulations of the SPR process; (b) determination of the mechanical properties of the resulting SPR joints through the use of three-dimensional, continuum finite-element-based numerical simulations of various mechanical tests performed on the SPR joints; and (c) determination, parameterization and validation of the constitutive relations for the simplified SPR connectors, using the results obtained in (b) and the available experimental results. The availability of such connectors is mandatory in large-scale computational analyses of whole-vehicle crash or even in simulations of vehicle component manufacturing, e.g. car-body electro-coat paint-baking process. In such simulations, explicit three-dimensional representation of all SPR joints is associated with a prohibitive computational cost. Findings – It is found that the approach developed in the present work can be used, within an engineering optimization procedure, to adjust the SPR process and material parameters (design variables) in order to obtain a desired combination of the SPR-joint mechanical properties (objective function). Originality/value – To the authors’ knowledge, the present work is the first public-domain report of the comprehensive modeling and simulations including: self-piercing process; virtual mechanical testing of the SPR joints; and derivation of the constitutive relations for the SPR connector elements.


Author(s):  
Yannis Kallinderis ◽  
Hyung Taek Ahn

Numerical prediction of vortex-induced vibrations requires employment of the unsteady Navier-Stokes equations. Current Navier-Stokes solvers are quite expensive for three-dimensional flow-structure applications. Acceptance of Computational Fluid Dynamics as a design tool for the offshore industry requires improvements to current CFD methods in order to address the following important issues: (i) stability and computation cost of the numerical simulation process, (ii) restriction on the size of the allowable time-step due to the coupling of the flow and structure solution processes, (iii) excessive number of computational elements for 3-D applications, and (iv) accuracy and computational cost of turbulence models used for high Reynolds number flow. The above four problems are addressed via a new numerical method which employs strong coupling between the flow and the structure solutions. Special coupling is also employed between the Reynolds-averaged Navier-Stokes equations and the Spalart-Allmaras turbulence model. An element-type independent spatial discretization scheme is also presented which can handle general hybrid meshes consisting of hexahedra, prisms, pyramids, and tetrahedral.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2242
Author(s):  
William A. Ramírez ◽  
Alessio Gizzi ◽  
Kevin L. Sack ◽  
Simonetta Filippi ◽  
Julius M. Guccione ◽  
...  

Computational cardiology is rapidly becoming the gold standard for innovative medical treatments and device development. Despite a worldwide effort in mathematical and computational modeling research, the complexity and intrinsic multiscale nature of the heart still limit our predictability power raising the question of the optimal modeling choice for large-scale whole-heart numerical investigations. We propose an extended numerical analysis among two different electrophysiological modeling approaches: a simplified phenomenological one and a detailed biophysical one. To achieve this, we considered three-dimensional healthy and infarcted swine heart geometries. Heterogeneous electrophysiological properties, fine-tuned DT-MRI -based anisotropy features, and non-conductive ischemic regions were included in a custom-built finite element code. We provide a quantitative comparison of the electrical behaviors during steady pacing and sustained ventricular fibrillation for healthy and diseased cases analyzing cardiac arrhythmias dynamics. Action potential duration (APD) restitution distributions, vortex filament counting, and pseudo-electrocardiography (ECG) signals were numerically quantified, introducing a novel statistical description of restitution patterns and ventricular fibrillation sustainability. Computational cost and scalability associated with the two modeling choices suggests that ventricular fibrillation signatures are mainly controlled by anatomy and structural parameters, rather than by regional restitution properties. Finally, we discuss limitations and translational perspectives of the different modeling approaches in view of large-scale whole-heart in silico studies.


2021 ◽  
Author(s):  
Kenneth Atz ◽  
Clemens Isert ◽  
Markus N. A. Böcker ◽  
José Jiménez-Luna ◽  
Gisbert Schneider

Many molecular design tasks benefit from fast and accurate calculations of quantum-mechanical (QM) properties. However, the computational cost of QM methods applied to drug-like molecules currently renders large-scale applications of quantum chemistry challenging. Aiming to mitigate this problem, we developed DelFTa, an open-source toolbox for the prediction of electronic properties of drug-like molecules at the density functional (DFT) level of theory, using Δ-machine-learning. Δ-Learning corrects the prediction error (Δ) of a fast but inaccurate property calculation. DelFTa employs state-of-the-art three-dimensional message-passing neural networks trained on a large dataset of QM properties. It provides access to a wide array of quantum observables on the molecular, atomic and bond levels by predicting approximations to DFT values from a low-cost semiempirical baseline. Δ-Learning outperformed its direct-learning counterpart for most of the considered QM endpoints. The results suggest that predictions for non-covalent intra- and intermolecular interactions can be extrapolated to larger biomolecular systems. The software is fully open-sourced and features documented command-line and Python APIs.


Sign in / Sign up

Export Citation Format

Share Document