scholarly journals EXPERIMENTAL DATA AND NUMERICAL SIMULATION OF WAVE LOADING AND ITS REDUCTION ON SHELTERED BUILDINGS

Author(s):  
Joaquin Moris ◽  
Andrew Kennedy ◽  
Joannes Westerink

Wave loading from inundation events like storms and tsunamis can cause severe structural damage to buildings (Xian et al., 2015); therefore, it is important to predict wave loading as accurately as possible. One uncertainty in estimating wave loads during inundation events is the possible reduction of loads by sheltering from other buildings. Understanding and quantifying this effect could reduce overestimated loads in sheltered buildings and avoid over-conservative structural design. This work aims to quantify the reduction of wave loads in sheltered buildings through the analysis of experimental data and numerical simulations.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/89QblLjDBnI

2010 ◽  
Vol 152-153 ◽  
pp. 713-716
Author(s):  
Jian Bing Men ◽  
Jian Wei Jiang ◽  
Shu You Wang

In present paper, aluminized explosives with separator inside are detonated by plane wave loads from metal flyer impacts. Four types of aluminized explosives(THAL、H-6、HBX-1、HBX-3) that used widely in warheads are test experimentally in order to obtain the critical thickness of separator(thicknesses L50-50% possibility of detonating). The critical separator thicknesses of detonating four types of aluminized explosives are calculated through statistical method according to experimental data. Stability sequence for these four explosive were determinate according to anti-detonation capability. The experimental results provided reference for the selection of explosive and structural design of warhead.


2021 ◽  
Vol 11 (11) ◽  
pp. 5283
Author(s):  
Jui-Ching Chou ◽  
Hsueh-Tusng Yang ◽  
Der-Guey Lin

Soil-liquefaction-related hazards can damage structures or lead to an extensive loss of life and property. Therefore, the stability and safety of structures against soil liquefaction are essential for evaluation in earthquake design. In practice, the simplified liquefaction analysis procedure associated with numerical simulation analysis is the most used approach for evaluating the behavior of structures or the effectiveness of mitigation plans. First, the occurrence of soil liquefaction is evaluated using the simplified procedure. If soil liquefaction occurs, the resulting structural damage or the following mitigation plan is evaluated using the numerical simulation analysis. Rational and comparable evaluation results between the simplified liquefaction analysis procedure and the numerical simulation analysis are achieved by ensuring that the liquefaction constitutive model used in the numerical simulation has a consistent liquefaction resistance with the simplified liquefaction analysis procedure. In this study, two frequently used liquefaction constitutive models (Finn model and UBCSAND model) were calibrated by fitting the liquefaction triggering curves of most used simplified liquefaction analysis procedures (NCEER, HBF, JRA96, and T-Y procedures) in Taiwan via FLAC program. In addition, the responses of two calibrated models were compared and discussed to provide guidelines for selecting an appropriate liquefaction constitutive model in future projects.


2008 ◽  
Vol 602 ◽  
pp. 209-218 ◽  
Author(s):  
J. J. J. GILLISSEN ◽  
B. J. BOERSMA ◽  
P. H. MORTENSEN ◽  
H. I. ANDERSSON

We use direct numerical simulation to study turbulent drag reduction by rigid polymer additives, referred to as fibres. The simulations agree with experimental data from the literature in terms of friction factor dependence on Reynolds number and fibre concentration. An expression for drag reduction is derived by adopting the concept of the elastic layer.


Author(s):  
Hairui Wang ◽  
Chunfang Guo ◽  
Yujie Li ◽  
Yahua Liu ◽  
Minjie Wang ◽  
...  

With the advantage of high adaptability, Miura-origami structure with curvature shows various engineering applications such as a sandwich between two stiff facings with curvature requirements and structural support to form a circular tube. In this research, a forming method of polymer circular tube with single-curved surface origami expressed by five parameters was established and its corresponding theory was solved considering forming rationality in actual manufacturing. The components of circular tube were fabricated by the vacuum forming process and then spliced together. We conducted numerical simulation to analyze the structural performance of the tube with five parameters and shown that these parameters have a great influence on energy absorbed performance. Finally, a male mold of a part with Arc Miura-origami structure was designed and fabricated. The parts with Arc Miura-origami were manufactured using vacuum forming process and then spliced and bonded together into a two-layer tube. This research may provide a method to design and fabricate Miura-origami structure with high efficiency and quality.


SPE Journal ◽  
2013 ◽  
Vol 18 (03) ◽  
pp. 440-447 ◽  
Author(s):  
C.C.. C. Ezeuko ◽  
J.. Wang ◽  
I.D.. D. Gates

Summary We present a numerical simulation approach that allows incorporation of emulsion modeling into steam-assisted gravity-drainage (SAGD) simulations with commercial reservoir simulators by means of a two-stage pseudochemical reaction. Numerical simulation results show excellent agreement with experimental data for low-pressure SAGD, accounting for approximately 24% deficiency in simulated oil recovery, compared with experimental data. Incorporating viscosity alteration, multiphase effect, and enthalpy of emulsification appears sufficient for effective representation of in-situ emulsion physics during SAGD in very-high-permeability systems. We observed that multiphase effects appear to dominate the viscosity effect of emulsion flow under SAGD conditions of heavy-oil (bitumen) recovery. Results also show that in-situ emulsification may play a vital role within the reservoir during SAGD, increasing bitumen mobility and thereby decreasing cumulative steam/oil ratio (cSOR). Results from this work extend understanding of SAGD by examining its performance in the presence of in-situ emulsification and associated flow of emulsion with bitumen in porous media.


2000 ◽  
Author(s):  
Fahua Gu ◽  
Abraham Engeda ◽  
Mike Cave ◽  
Jean-Luc Di Liberti

Abstract A numerical simulation is performed on a single stage centrifugal compressor using the commercially available CFD software, CFX-TASCflow. The steady flow is obtained by circumferentially averaging the exit fluxes of the impeller. Three runs are made at design condition and off-design conditions. The predicted performance is in agreement with experimental data. The flow details inside the stationary components are investigated, resulting in a flow model describing the volute/diffuser interaction at design and off-design conditions. The recirculation and twin vortex structure are found to explain the volute loss increase at lower and higher mass flows, respectively.


2021 ◽  
Author(s):  
Xiangbiao Wang ◽  
Chun Bao Li ◽  
Ling Zhu

Abstract Ship collision accidents occur from time to time in recent years, and this would cause serious consequences such as casualties, environmental pollution, loss of cargo on board, damage to the ship and its equipment, etc. Therefore, it is of great significance to study the response of ship motion and the mechanism of structural damage during the collision. In this paper, model experiments and numerical simulation are used to study the ship-ship collision. Firstly, the Coupled Eulerian-Lagrangian (CEL) was used to simulate the fluid-structure interaction for predicting structural deformation and ship motion during the normal ship-ship collision. Meanwhile, a series of model tests were carried out to validate the numerical results. The validation presented that the CEL simulation was in good agreement with the model test. However, the CEL simulation could not present the characteristics the time-dependent added mass.


1984 ◽  
Vol 49 (1) ◽  
pp. 170-178 ◽  
Author(s):  
Karel Klusáček

The method of numerical simulation of a catalytic system dynamics with lumped parameters is reported. Appropriate balance equations have been derived and suitable calculation procedures are discussed. Numerical example of simulation of the catalytic methanol dehydration dynamics is presented and calculated relaxation curves are compared with experimental data obtained earlier.


Sign in / Sign up

Export Citation Format

Share Document